
“Testing shows the presence, not the
absence of bugs.”

— Edsger W. Dijkstra

PROOF101: Formal Verification &
Proof Assistants
Google Developer Groups@ AUB
& AUBMath Society
Spring 2026

Week 1 of 10
Why Our Code Breaks (and
How to Fix It)
Daniel Dia & Guest Lecturers
https:

//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

Section 1

Introduction

Welcome to PROOF101

Course Overview: An introduction to formal verification and proof assistants using Lean4

What you’ll learn:
• Why software failures are so costly
• The fundamental limitations of testing
• What formal verification can do that testing cannot
• How to use Lean4 to write verified software
• The mathematics of program correctness

By the end of this course:
• Write proofs in Lean4
• Understand dependent type theory
• Verify properties of your programs
• Appreciate the power of formal methods

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 3/66

Section 2

The High Cost of Software Bugs

The Cost of Getting It Wrong

Software bugs aren’t just annoying – they’re catastrophic

We’ll examine three disasters that could have been prevented:

• Ariane 5 (1996): $370 million rocket explosion in 37 seconds

• Therac-25 (1985-87): Radiation overdoses kill 3 patients

• Heartbleed (2014): 17% of the internet’s encryption compromised

Common threads:

• All were created by expert teams

• All had extensive testing

• All involved seemingly ”simple” bugs

• All could have been caught by formal verification

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 5/66

Section 2
The High Cost of Software Bugs

Subsection 2.1

Ariane 5 Rocket (1996)

Ariane 5: $370Million in 37 Seconds

June 4, 1996: European Space Agency’s Ariane 5 rocket

The Disaster:
• 37 seconds after launch, rocket self-destructed
• $370 million lost (rocket + payload)
• Years of work destroyed
• No casualties (unmanned), but a massive setback

The Cause: Integer overflow
• Reused code from Ariane 4 (cost-saving measure)
• Converted 64-bit floating-point velocity to 16-bit signed integer
• Ariane 5 was faster than Ariane 4
• Velocity exceeded 16-bit integer range (> 32, 767)
• Overflow caused system crash

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 7/66

Ariane 5: The Bug

Why Testing Missed It:

• Tested with Ariane 4 flight profiles
(slower velocities)

• Never tested with Ariane 5’s higher
velocities

• Assumed reused code was “proven” by
prior flights

• Testing can only check cases you think
to test

The Problematic Code:

// 64-bit float velocity

double vel_x = get_velocity();

// Convert to 16-bit integer

// (Range: -32768 to 32767)

int16_t vel_int = (int16_t)vel_x;

// If vel_x > 32767: OVERFLOW

How formal verification could have helped:

• Type system enforces bounds

• Static analysis detects overflow

• Dependent types: Int16Range

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 8/66

Ariane 5: The Danger of Assumptions

The reuse fallacy: “It worked before, so it’s safe”

What went wrong:
• Code was correct for Ariane 4’s specifications
• Ariane 5 had different specifications (higher velocity)
• No verification that old code met new specifications
• The type system allowed an unsafe conversion

The lesson:
• Testing doesn’t prove general correctness
• It proves correctness for tested scenarios only
• When requirements change, tests must change too
• But with formal verification, the types would have caught this immediately

Past success is not a guarantee of future correctness
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 9/66

Section 2
The High Cost of Software Bugs

Subsection 2.2

Therac-25 Medical Device (1985-1987)

Therac-25: When Software Kills

1985-1987: Radiation therapy machine

The Disaster:
• 6 patients received massive radiation overdoses (100x intended)
• 3 deaths directly attributed to device
• 3 more suffered serious injuries
• One of the worst medical device failures in history

The Cause: Race condition in safety-critical code
• Machine had two modes: low-power X-ray, high-power electron beam
• Operator could edit settings rapidly
• Software had timing-dependent bug
• Fast operator inputs triggered race condition
• Safety checks bypassed, high-power beam fired without shielding

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 11/66

Therac-25: The Race Condition Problem

The Race Condition:

• Bug only occurred if operator edited within 8
seconds

• Required specific sequence of keystrokes

• Happened once in thousands of uses

• Intermittent failure – hardest to debug

Testing Limitations:

• Tested with “normal” operator speeds

• Didn’t test edge cases (fast editing)

• Timing-dependent bugs rarely caught in testing

• Manual testing can’t explore all timing
interleavings

The fundamental challenge:

• Concurrent systems have
exponentially many execution
orders

• Even two operations can
interleave in many ways

• Testing explores only a tiny
fraction

The bug was literally waiting for the
right timing to kill someone

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 12/66

Concurrent Systems Are Hard

The state space explosion:

• With 𝑛 operations, there are 𝑛! possible orderings
• 10 operations = 3.6 million possible orderings
• 20 operations = 2.4 × 1018 orderings
• Testing can check maybe thousands of orderings

Real systems are worse:

• Operations can be interrupted mid-execution
• Multiple threads running on multiple cores
• Non-deterministic timing
• Hardware reordering of operations

Testing approach: Try some orderings, hope for the best
Formal verification: Prove properties hold for ALL orderings

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 13/66

Section 2
The High Cost of Software Bugs

Subsection 2.3

Heartbleed (2014)

Heartbleed: The Internet’s Worst Day

April 2014: Critical vulnerability in OpenSSL

The Impact:
• Affected 17% of all secure web servers (500,000+)
• Exposed passwords, private keys, personal data
• Major sites affected: Google, Facebook, Yahoo, Amazon
• Existed for 2+ years before discovery
• Billions of dollars in damages

The Cause: Buffer over-read (bounds check missing)
• NOT a flaw in cryptography itself, but a Simple programming error
• Client sends: ”My payload is N bytes” + actual payload
• Server blindly trusts N without checking actual size
• Client lies: claims 64KB payload, sends 1 byte
• Server returns 64KB – actual payload + 64KB of memory!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 15/66

Heartbleed: The Bug

Simplified version of the vulnerable code:

uint16_t payload_length = read_uint16(request); // Client claims length

char* payload = read_bytes(request);

// VULNERABILITY: No check if payload_length matches reality!

char* response = malloc(payload_length);

memcpy(response, payload, payload_length); // BUFFER OVER-READ

send_response(response, payload_length);

The Attack:

• Attacker sends: payload_length = 64000, actual payload: 1 byte
• memcpy copies 64000 bytes starting from payload
• Reads past end of payload into adjacent memory
• Returns 64KB of secret server memory to attacker
• Attacker retrieves passwords, encryption keys, personal data

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 16/66

Heartbleed: Why Testing Failed

WhyWasn’t This Caught?

• OpenSSL is open source – 1000s of eyes on code

• Extensive test suite

• Used by major companies

• But: tests assumed honest clients

• Never tested malicious inputs

Testing Limitations:

• Can’t test all possible inputs

• Adversarial testing requires security mindset

• Memory errors don’t always crash immediately

• May pass all tests but still be exploitable

The deeper issue:

• Testers think like developers

• Attackers think differently

• Can you test for all malicious
inputs?

You can’t test what you don’t think
to test

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 17/66

Section 3

The Limitations of Testing

The Fundamental Problem: Finite Tests, Infinite Possibilities

The core limitation of testing:

• Programs have infinite possible inputs

• We can only run finite number of tests

• Bugs hide in the untested cases

Example: Simple addition function add(x: Int64, y: Int64)

• Possible inputs: 264 × 264 = 2128 combinations

• That’s roughly 3.4 × 1038 test cases

• At 1 billion tests/second: 1021 years to test all

• The universe is only 1.4 × 1010 years old!

Dijkstra’s quote (1972):
“Testing shows the presence, not the absence of bugs”

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 19/66

Why Testing Isn’t Enough

Testing can show the presence of bugs, never their absence. — Edsger Dijkstra

Fundamental Limitations:

• Can only check finite number of inputs

• Can’t test all possible executions (timing, concurrency)

• Can’t test adversarial behavior

• Doesn’t prove correctness, only finds bugs

Example: Testing add(x, y)

• Infinite inputs: 264 × 264 combinations (64-bit ints)

• Would take billions of years to test all inputs

• Test 1000 cases? Still leaves 1030+ untested

• Testing gives confidence, not certainty

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 20/66

What Testing Systematically Misses

Categories of bugs testing fails to catch:

1. Edge cases you didn’t think of
• Extreme values, boundary conditions, unusual combinations
• Example: Ariane 5 (higher velocity than tested)

2. Rare timing-dependent bugs
• Race conditions, deadlocks, timing windows
• Example: Therac-25 (8-second window)

3. Malicious inputs
• Adversarial testing requires attacker mindset
• Example: Heartbleed (lying about payload size)

4. Complex interactions
• Emergent behavior from component combinations
• Exponential state space

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 21/66

The Testing Paradox

What testing IS good for:

• Finding bugs during development

• Regression testing (so fixes don’t break things)

• Integration testing (components work together)

• Performance testing

• User acceptance testing

What testing CANNOT guarantee:

• Absence of bugs

• Correctness for all inputs

• Freedom from race conditions

• Memory safety

Testing is necessary but insufficient

For safety-critical systems:
Testing alone is not acceptable

• Medical devices, aerospace,
autonomous vehicles

• Financial systems,
cryptography, infrastructure

• Need mathematical proof of
correctness

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 22/66

Section 4

Formal Methods: A Better Way

What is Formal Verification?

Usingmathematical logic to prove program
correctness

Core Idea:

• Specify desired behavior
mathematically

• Prove programmeets specification

• Computer checks the proof

• If proof is valid, program is correct – for
ALL inputs

Not just for math theorems:

• Hardware correctness (CPU designs)

• Software correctness (compilers, OS)

• Network protocols (TLS, consensus)

• Cryptographic implementations

• Control systems (aircraft, medical)

The line blurs:

• Systems require math to describe

• Theorems may require computation

• Programs and proofs are deeply
connected (Curry-Howard)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 24/66

What Does ”Specification” Mean?

A specification is a precisemathematical description of what a program should do

Examples:
• sort(list) returns a permutation of the input where each element≤ the next
• encrypt(key, plaintext) produces ciphertext that can only be decrypted with the
same key

• transfer(from, to, amount) decreases from by amount and increases to by
amount

Specifications can be:
• Functional properties (what output for what input)
• Safety properties (bad things never happen)
• Liveness properties (good things eventually happen)
• Security properties (attackers can’t learn secrets)

Verification proves: implementation matches specification
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 25/66

The Gold Standard: Proof

What is amathematical proof?
• Chain of logical reasoning from axioms to conclusion
• Each step justified by previously proven facts
• No gaps, no hand-waving
• Checkable by an independent verifier

20th century logic breakthrough:
• All mathematical reasoning reducible to small set of rules
• Foundation: axiomatic set theory or type theory
• Proofs are mechanical – computers can check them
• Enables automated reasoning

Two complementary approaches:
1. Automated Theorem Proving: Computer finds proofs
2. Interactive Theorem Proving: Human guides, computer verifies

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 26/66

A Brief History of Formal Methods

The journey frommathematics to verified software:

• 1930s: Church, Turing, Gödel – foundations of computation

• 1960s: Dijkstra, Hoare – program correctness logic

• 1968: De Bruijn – Automath, first proof assistant

• 1970s-80s: Development of type theory (Martin-Löf, Coquand)

• 1984: Rocq proof assistant created

• 2000s: Verified compilers (CompCert), OS kernels (seL4)

• 2010s: Lean development begins at Microsoft Research

• 2020s: Industry adoption, Lean 4 release, Lean FRO formed

From theoretical curiosity to practical tool for building trustworthy systems

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 27/66

Approach 1: Automated Theorem Proving

Goal: Find proofs automatically

Technologies:

• SAT solvers: Boolean satisfiability (billions
of variables)

• SMT solvers: Satisfiability modulo
theories (arithmetic, arrays, etc.)

• Resolution provers: First-order logic

• Computer algebra systems: Symbolic
mathematics

• Model checkers: Explore all possible
states

Strengths:

• Fully automated – no human intervention

• Very fast for specific domains

• Industrial applications (hardware
verification)

Trade-offs:

• Power & efficiency at expense of
guaranteed soundness

• May have bugs in implementation

• Limited to specific domains

• Can fail to find proofs that exist

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 28/66

SAT/SMT Solvers in the Real World

Where automated theorem proving shines:

Hardware verification:
• Intel, AMD use SAT solvers to verify CPU designs
• Find bugs in circuits with billions of transistors
• Prevents Pentium FDIV-style disasters

Software analysis:
• Microsoft’s Static Driver Verifier uses SMT solvers
• Finds bugs in Windows device drivers
• Amazon’s S2N uses SMT to verify crypto implementations

The trade-off:
• Automated tools themselves might have bugs
• Nomathematical guarantee of soundness
• But: extremely practical for finding bugs quickly

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 29/66

Approach 2: Interactive Theorem Proving

Goal: Verify every step is correct

How it works:

• Human provides high-level proof strategy

• Computer fills in details and checks
correctness

• Every step justified (axioms & prior thms)

• Produces proof objects – independently
checkable

Used for:

• Safety-critical systems (e.g. verified
compilers)

• Mathematical theorems

Strengths:

• Guaranteed soundness – small trusted
kernel

• Works for any domain

• Proofs are artifacts – can be
shared/checked

• Extremely high assurance

Trade-offs:

• Requires human expertise and time

• Steep learning curve

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 30/66

Interactive Theorem Proving: Success Stories

Real systems verified with proof assistants:

CompCert (using Rocq):
• Verified C compiler
• Proves: compiled code behaves exactly as source code specifies
• No compiler bugs can silently introduce errors

seL4 (using Isabelle/HOL):
• Verified OS microkernel
• Proves: kernel has no buffer overflows, null pointer dereferences, etc.
• Used in critical systems (autonomous vehicles, medical devices)

Mathematical achievements:
• Four Color Theorem (Rocq)
• Feit-Thompson Theorem (Rocq)
• Kepler Conjecture (Isabelle/HOL and Lean)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 31/66

Automated vs Interactive: When to Use Each

Automated (SAT/SMT):

• Use when: Finding bugs quickly

• Guarantee: Might miss bugs, might have
false positives

• Effort: Low (push-button)

• Domain: Specific (bounded model
checking)

Interactive (Proof Assistants):

• Use when: Need absolute certainty

• Guarantee: Mathematical soundness

• Effort: High (requires expertise)

• Domain: General (any property you can
state)

The spectrum:

• Left (Automated): Fast, practical, but less certain

• Right (Interactive): Slow, demanding, but provably correct

• Lean’s approach: Combine both! Automation within proof assistant framework

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 32/66

Section 5

The Tool: Proof Assistants

What is a Proof Assistant?

Interactive software for constructing formal proofs:
• User provides guidance, system ensures correctness
• Type system = logical system
• Programs = Proofs (Curry-Howard correspondence)
• Automated tactics for common patterns

Supports both:
• Mathematical reasoning (theorems, lemmas, propositions)
• Systems reasoning (software/hardware correctness)

Major proof assistants:
• Rocq (France) – used for CompCert verified C compiler
• Isabelle/HOL (Cambridge, TU Munich) – seL4 verified OS kernel
• Agda (Sweden) – Homotopy type theory
• Lean (Microsoft Research → Lean FRO) – mathematical proofs + systems

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 34/66

The Curry-Howard Correspondence

An insane discovery: Programs and proofs are (secretly) the same thing!

In Logic:

• Propositions

• Proofs

• Implication (𝐴 → 𝐵)
• Conjunction (𝐴 ∧ 𝐵)
• Truth

In Programming:

• Types

• Programs

• Function types

• Product types (tuples)

• Unit type

The correspondence:
• Writing a program of type 𝑇 = proving proposition 𝑇
• Type-checking = proof-checking
• Running a program = simplifying a proof

This is why we can use programming languages as proof assistants!
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 35/66

The Lean Theorem Prover

Bridging automated and interactive
approaches

Lean’s Philosophy:

• Situate automated tools in framework
supporting user interaction

• Construct fully specified axiomatic
proofs

• Support reasoning about math AND
complex systems

• Based on dependent type theory
(Calculus of Constructions)

Unique Features:

• Powerful automation (tactics, decision
procedures)

• Small trusted kernel (De Bruijn
criterion)

• Metaprogramming in Lean itself

Real-world Impact:

• Lean FRO: Non-profit development

• Used in industry for verified systems

• Mathlib: Massive math library

• Active formal verification research

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 36/66

Section 6

Why Lean4?

Lean’s Dual Nature

As a Proof Assistant:

• Interactive theorem proving

• Dependent type theory

• Verified mathematical proofs

• Guarantees correctness

• Curry-Howard correspondence

As a Programming Language:

• Functional programming

• Programs with precise semantics

• Reason about computations

• Extract verified code

• Lean implemented in itself!

“Programs are proofs, proofs are programs”

— (Oversimplified) Curry-Howard Correspondence

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 38/66

Why Lean4 for This Course?

1. Modern & Active
• Developed at Lean FRO, rapidly evolving
• Regular releases, active development, growing ecosystem

2. Best of BothWorlds
• Powerful automation (tactics)
• Verification guarantees (kernel)
• SMT solver integration

3. Practical Programming Language
• Real language, not just toy→ can write actual applications!
• Good performance

4. Extensible
• Metaprogramming in Lean itself
• Create custom tactics, domain-specific automation

5. Strong Community
• Excellent documentation with active forums and Discord
• Industry adoption

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 39/66

Mathlib: Lean’s Mathematical Library

One of Lean’s killer features: Mathlib

What is Mathlib?
• Massive library of formalized mathematics
• Over 1 million lines of code
• Thousands of definitions and theorems
• From basic algebra to more advanced topics in math

Why it matters:
• Don’t start from scratch – build on existing work
• Community-maintained, peer-reviewed
• Used in both research mathematics and verified systems
• We’ll explore contributing to Mathlib in Week 6

Standing on the shoulders of giants
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 40/66

Dependent Types: The Key Innovation

What are Dependent Types?

• Types that can depend on values

• Types become first-class citizens

• Express properties impossible in
traditional type systems

Power:

• Catch errors at compile-time that
testing would miss

• Encode invariants in types

• Eliminate entire classes of bugs

• “If it compiles, it’s correct”

Examples:

• Vector 𝛼 n –
list of exactly 𝑛 elements

• Matrix m n –𝑚 × 𝑛matrix
• Fin n – numbers less than 𝑛
• {x : Nat // x < 10}

– numbers< 10

We’ll explore this deeply in Week 2!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 41/66

Dependent Types: Making Invalid States Unrepresentable

Traditional types:
• List Int – any list of integers (could be empty, length 5, length 1000)
• Int – any integer (could be -1000, 0, 1000000)

Dependent types encode constraints:
• Vector Int 5 – list of exactly 5 integers (can’t be empty or length 4)
• Fin 10 – integer from 0 to 9 (can’t be 10 or -1)
• {x : Int // x > 0} – positive integers (can’t be 0 or negative)

The power:
• Array access with Fin n index – no bounds checks needed!
• Division by {x : Int // x ≠ 0} – no division by zero!
• Matrix multiplication with compatible dimensions – no dimension mismatch!

The type system prevents you from writing buggy code
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 42/66

Lean’s Approach: Strict, Pure, Functional

Three key properties:

1. Strict

• Arguments fully computed before
function execution

• Like most languages (C, Java, Python)

• Predictable evaluation order

2. Pure

• No hidden side effects

• Same input always gives same output

• Enables equational reasoning

3. Functional

• Functions are first-class values

• Evaluation like mathematical expressions

• Immutable data structures

• Higher-order functions

Result: Programs easier to reason about and
verify

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 43/66

Why Purity and Immutability Matter for Verification

Pure functions are easier to reason about:

Impure (with side effects):
• f(x)might return different values each time
• Might modify global state, file system, network
• Difficult to predict behavior
• Hard to verify mathematically

Pure (no side effects):
• f(x) always returns same value for same input
• No hidden modifications
• Can replace f(x) with its result (referential transparency)
• Easy to reason about mathematically: if 𝑥 = 𝑦, then 𝑓(𝑥) = 𝑓(𝑦)

Purity enables equational reasoning – the foundation of formal verification
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 44/66

Section 7

Snapshot fromWeek 2: The Lean Architecture

From Source Code to Kernel

Lean’s architecture:
Trusted kernel with untrusted elaborator

1. Source code (what you write):

• High-level, readable syntax

• Type inference, implicit arguments

• Tactics, notation, macros

2. Elaborator (untrusted):

• Fills in implicit arguments

• Resolves type class instances

• Expands macros and notation

• Compiles tactics to proof terms

3. Kernel (trusted):

• Small, verified core (∼10k lines)
• Type checks all terms

• Ensures logical soundness

• De Bruijn indices, no names

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 46/66

The De Bruijn Criterion

De Bruijn criterion: Trust only a small, verified kernel

Named after: Nicolaas Govert de Bruijn (1918-2012)

• Dutch mathematician

• Created Automath (first proof assistant)

• Emphasized minimal trusted base

The principle:

• Keep the trusted core as small as possible

• All proof terms flow through the kernel

• Bugs in elaborator don’t compromise soundness

• Kernel is small enough to verify by hand

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 47/66

Why This SeparationMatters

Benefits:

• Elaborator can be complex without risking soundness

• Bugs in tactics don’t compromise proofs

• Easy to add new features (tactics, notation)

• Kernel is small enough to verify by hand

Example: The simp tactic

• Elaborator: Complex rewrite engine (thousands of lines)

• Output: Simple chain of rewrite proof terms

• Kernel: Verifies each rewrite is valid

• If simp has a bug, kernel rejects the proof!

Words to live by: ”Don’t trust, verify” – Even if elaborator is buggy, kernel catches it!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 48/66

What DoWe Actually Trust?

The trust stack in Lean:

1. The kernel (∼10,000 lines of code)
• Small enough to audit by hand
• Formally specified
• Multiple independent implementations exist

2. The type theory (Calculus of Inductive Constructions)
• Well-studied mathematical foundations
• Known to be consistent (relative to weaker systems)

3. The compiler/interpreter
• For execution (not for proofs)
• Can be buggy – doesn’t affect soundness of proofs

What we DON’T need to trust:
• The elaborator, tactics, or any automation
• External libraries (Mathlib)
• Our own proof code

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 49/66

Section 8

What Could Have Been Prevented?

From Runtime Disasters to Compile-Time Errors

Without FV:

• Write some code

• Test it (hoping you test the right cases)

• Deploy it

• Bug triggers at runtime

• System crashes / people may die / a lot
of money is lost

With FV:

• Write code with formal specifications

• Attempt to compile

• Type system / proof checker rejects
invalid code

• Bug caught at compile-time

• Fix it before it ever runs

The fundamental shift formal verification enables:
Turning catastrophic runtime crashes into compile-time type errors

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 51/66

Formal Verification: The Preventions

What could FV have prevented?

Ariane 5 ($370M loss):

• BoundedInt 0 32767

• Type system catches overflow

• Assignment must type-check

• Error at compile-time

Therac-25 (6 deaths):

• Verify all interleavings

• Prove: “beam ⟹ shield”

• LTL:�(beam → shield)
• Race condition: Proof fails

Heartbleed (billions lost):

• Array 𝛼 n – length in type

• Type error on bounds violation

• n ≤ src.length enforced

• Violation: Type error

The Bottom Line:
Formal verification turns
catastrophic crashes
into compiler errors.

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 52/66

Ariane 5: How TypesWould Have Prevented the Disaster

The bug in traditional C:
• double (64-bit float) cast to int16_t (16-bit signed int)
• Type system allows this dangerous conversion
• Overflow is silent – no error, just wrong value
• Wrong value causes system crash

With dependent types:
• Velocity type: Velocity : Float

• Target type: BoundedInt16 : {x : Int // -32768 ≤ x ≤ 32767}

• Conversion requires proof: -32768 ≤ velocity ≤ 32767

• Proof fails for Ariane 5’s velocity
• Compilation fails – developer forced to fix before launch

Type error instead of $370M explosion
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 53/66

Therac-25: HowModel CheckingWould Have Prevented Deaths

How formal verification could have helped:
• Model checking can explore all possible interleavings
• Linear temporal logic to specify safety properties
• “Safety interlock must ALWAYS engage before beam fire”

The specification in temporal logic:
• �(beam_active → shield_engaged)
• “Always” (�) means in every possible execution
• “Implies” (→) means beam cannot fire without shield
• Model checker would explore all possible timing interleavings
• Race condition would cause the proof to FAIL

Result:
• Bug found during development, not after deployment
• Fix the race condition before any patient is harmed

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 54/66

Heartbleed: How Dependent TypesWould Have Prevented Exposure

How formal verification could have helped:
• Dependent types: length encoded in type
• Array 𝛼 n – array of exactly n elements
• Type system prevents out-of-bounds access at compile-time
• Don’t rely on programmers remembering to check bounds – make it impossible to forget

With dependent types, the bug is impossible to express:
• The actual payload size is part of its type
• Compiler enforces: can’t copy more than actual size
• Attempting to violate bounds = compile-time type error
• No runtime check needed – guaranteed safe by construction

The guarantee:
• If code compiles, bounds are correct
• No way to express buffer over-read in well-typed code

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 55/66

The Limits of Verification

The Core Guarantee
If it compiles in a verified system, certain classes of bugs cannot exist

What can be eliminated:

• Null pointer dereferences

• Buffer overflows

• Integer overflows

• Type mismatches

• Race conditions (with proper modeling)

• Logic errors (if specification is correct)

What still requires work:

• Specification correctness

• Performance bugs

• Hardware failures

• User errors

“The weakest link in the security chain is
the human element.”

— Kevin Mitnick

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 56/66

The Specification Challenge

Verification is only as good as the specification

The problem:
• Formal verification proves: implementation matches specification
• But what if the specification itself is wrong?
• Ex: specifying “system should encrypt data” but forgetting to specify “key must be secret”

Real-world example:
• Boeing 737 MAX crashes (2018-2019)
• Software worked as specified, but specification didn’t account for sensor failures
• 346 people died

The lesson:
• Verification requires correct specifications (that are still written by humans)
• This is why domain expertise + formal methods = crucial

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 57/66

Section 9

Course Structure

WhatWe’ll Cover in PROOF101

Week 1: Why Our Code Breaks (and How to Fix It) (today!)

Week 2: Dependent Type Theory (Daniel Dia)

Week 3: Functional Programming (Daniel Dia)

Week 4: Intro to Tactic-based Proving (Guest Session, Dr. Nadim Kobeissi)

Week 5: Proofs & Semantics (Daniel Dia)

Week 6: Contributing to Mathlib (Guest Session, Rida Hamadani)

Week 7: Proving Security in Software (Guest Session, Dr. Nadim Kobeissi)

Week 8: Monads, Tactics, and Applications (Guest Session, Dr. Robert Lewis)

Week 9: The Broader Landscape (Rust) and Project Kick-off (Daniel Dia)

TBD: The Mathematical Foundations of Proof Assistants (Guest Session, Dr. Assaf Kfoury)

Week 10: Project Showcase & Wrap-up (Entire team)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 59/66

How to Succeed in This Course

Time commitment (different every week):

• Attend weekly lectures (1.5–2 hours)

• Complete weekly programming
challenges (2–3 hours)

• Read assigned textbook chapters

Tips:

• Start assignments early – Lean has a bit
of a learning curve

• Practice regularly – programming
requires repetition

• Don’t be discouraged – everyone
struggles at first

Resources & Textbooks:

• Theorem Proving in Lean 4

• Functional Programming in Lean

• The Hitchhiker’s Guide to Logical
Verification

• Course website:
https://danieldia-dev.

github.io/proofs/

• Other links are on the course website
(Discord & WhatsApp)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 60/66

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

Section 10

Summary

Week 1 Summary

The Problem:
• Software bugs are catastrophically expensive
• Testing alone cannot guarantee correctness
• Safety-critical systems need stronger guarantees

The Solution:
• Formal verification uses mathematical proofs
• Proof assistants make verification practical
• Dependent types catch bugs at compile-time
• Interactive theorem proving provides highest assurance

Why Lean4:
• Combines automation with verification guarantees
• Modern, practical programming language
• Strong type system with dependent types
• Active community and ecosystem

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 62/66

Section 11

Assignments & Next Steps

This Week’s Assignments

Readings (see the course website)
• Theorem Proving in Lean 4 – Chapter 1

• Functional Programming in Lean – Chapter 1

• Course website introduction and Lean setup guide

“Hand-in” Assignments (see the course website)
• Install the Lean4 VSCode extension

• Say ”Hi” in Lean Zulip community (Lebanon or/and NewMembers channels)

• Complete PROOF101 Quiz 1

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 64/66

Questions & Discussion

Questions?

Join our community:
Discord: Link on website
WhatsApp: Link on website

Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 65/66

“Testing shows the presence, not the
absence of bugs.”

— Edsger W. Dijkstra

PROOF101: Formal Verification &
Proof Assistants
Google Developer Groups@ AUB
& AUBMath Society
Spring 2026

Week 1 of 10
Why Our Code Breaks (and
How to Fix It)
Daniel Dia & Guest Lecturers
https:

//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

	Introduction
	The High Cost of Software Bugs
	Ariane 5 Rocket (1996)
	Therac-25 Medical Device (1985-1987)
	Heartbleed (2014)

	The Limitations of Testing
	Formal Methods: A Better Way
	The Tool: Proof Assistants
	Why Lean4?
	Snapshot from Week 2: The Lean Architecture
	What Could Have Been Prevented?
	Course Structure
	Summary
	Assignments & Next Steps

