PROOF101;: Formal Verification &

Proof Assistants
Google Developer Groups @ AUB
& AUB Math Society

“Testing shows the presence, not the Spring 2026
absence of bugs.”
— Edsger W. Dijkstra Week 10f 10
Why Our Code Breaks (and

(#][=) How to Fix It)
][5

MA%EMAHBS Daniel Dia & Guest Lecturers
[ETY S

https:
//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

Section 1

Introduction

Welcome to PROOF101

Course Overview: An introduction to formal verification and proof assistants using Lean4

What you'll learn:
® Why software failures are so costly

The fundamental limitations of testing

What formal verification can do that testing cannot
® How to use Lean4 to write verified software

The mathematics of program correctness

By the end of this course:
® Write proofs in Lean4
® Understand dependent type theory
® Verify properties of your programs
® Appreciate the power of formal methods

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 3/66

Section 2

The High Cost of Software Bugs

The Cost of Getting It Wrong

Software bugs aren't just annoying — they’re catastrophic

We'll examine three disasters that could have been prevented:
® Ariane 5(1996): $370 million rocket explosion in 37 seconds
® Therac-25 (1985-87): Radiation overdoses kill 3 patients
® Heartbleed (2014): 17% of the internet’s encryption compromised

Common threads:

All were created by expert teams

All had extensive testing

Allinvolved seemingly "simple” bugs

All could have been caught by formal verification

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 5/66

Section 2

Subsection 2.1

Ariane 5: $370 Million in 37 Seconds

June 4,1996: European Space Agency's Ariane 5 rocket

The Disaster:
® 37 seconds after launch, rocket self-destructed

$370 million lost (rocket + payload)
® Years of work destroyed
® No casualties (unmanned), but a massive setback

The Cause: Integer overflow
® Reused code from Ariane 4 (cost-saving measure)
® (Converted 64-bit floating-point velocity to 16-bit signed integer
® Ariane 5 was faster than Ariane 4
® Velocity exceeded 16-bit integer range (> 32, 767)
® Qverflow caused system crash

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 7/66

Ariane 5: The Bug

Why Testing Missed It:

® Tested with Ariane 4 flight profiles
(slower velocities)

® Never tested with Ariane 5's higher
velocities

® Assumed reused code was “proven” by
prior flights

® Testing can only check cases you think
to test

PROOF101 Week 1 Introduction

The Problematic Code:

// 64-bit float velocity
double vel x = get velocity();

// Convert to 16-bit integer
// (Range: -32768 to 32767)
intl6_t vel int = (intl6_t)vel x;

// If vel x > 32767: OVERFLOW

How formal verification could have helped:

® Type system enforces bounds
® Static analysis detects overflow

® Dependent types: Int16Range

Daniel Dia & Guest Lecturers (AUB) 8/66

Ariane 5: The Danger of Assumptions

The reuse fallacy: “It worked before, so it's safe”

What went wrong;:
® Code was correct for Ariane 4's specifications
® Ariane 5 had different specifications (higher velocity)
® No verification that old code met new specifications
® The type system allowed an unsafe conversion

The lesson:
® Testing doesn't prove general correctness
® |t proves correctness for tested scenarios only
® When requirements change, tests must change too
® But with formal verification, the types would have caught this immediately

Past success is not a guarantee of future correctness

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 9/66

Section 2

Subsection 2.2

Therac-25: When Software Kills

1985-1987: Radiation therapy machine

The Disaster:
® 6 patients received massive radiation overdoses (100x intended)
® 3 deaths directly attributed to device
® 3 more suffered serious injuries

One of the worst medical device failures in history

The Cause: Race condition in safety-critical code
® Machine had two modes: low-power X-ray, high-power electron beam
® Operator could edit settings rapidly
® Software had timing-dependent bug
® Fast operator inputs triggered race condition
® Safety checks bypassed, high-power beam fired without shielding

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 11/66

Therac-25: The Race Condition Problem

The Race Condition:

® Bugonly occurred if operator edited within 8
seconds

® Required specific sequence of keystrokes
® Happened once in thousands of uses

® |ntermittent failure — hardest to debug

Testing Limitations:
® Tested with “normal” operator speeds
® Didn't test edge cases (fast editing)
® Timing-dependent bugs rarely caught in testing

® Manual testing can't explore all timing
interleavings

The fundamental challenge:

® Concurrent systems have
exponentially many execution
orders

® Even two operations can
interleave in many ways

® Testing explores only a tiny
fraction

The bug was literally waiting for the
right timing to kill someone

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 12/66

Concurrent Systems Are Hard

The state space explosion:
® With n operations, there are n! possible orderings
® 10 operations = 3.6 million possible orderings
® 20 operations = 2.4 x 10'® orderings

® Testing can check maybe thousands of orderings

Real systems are worse:
® QOperations can be interrupted mid-execution
® Multiple threads running on multiple cores
® Non-deterministic timing
® Hardware reordering of operations
Testing approach: Try some orderings, hope for the best

Formal verification: Prove properties hold for ALL orderings

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 13/66

Section 2

Subsection 2.3

Heartbleed: The Internet’s Worst Day

April 2014: Critical vulnerability in OpenSSL

The Impact:
® Affected 17% of all secure web servers (500,000+)
® Exposed passwords, private keys, personal data
® Major sites affected: Google, Facebook, Yahoo, Amazon
® Existed for 2+ years before discovery
® Billions of dollars in damages
The Cause: Buffer over-read (bounds check missing)
® NOT a flaw in cryptography itself, but a Simple programming error
® (Client sends: "My payload is N bytes” + actual payload
® Server blindly trusts N without checking actual size
® Clientlies: claims 64KB payload, sends 1 byte
® Server returns 64KB — actual payload + 64KB of memory!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 15/66

Heartbleed: The Bug

Simplified version of the vulnerable code:

uintl6_t payload length = read uintl6(request); // Client claims length
char* payload = read_bytes(request);

// VULNERABILITY: No check if payload length matches reality!
char* response = malloc(payload_length);

memcpy (response, payload, payload_length); // BUFFER OVER-READ
send_response(response, payload_length);

The Attack:
® Attacker sends: payload length = 64000, actual payload: 1byte
® memcpy copies 64000 bytes starting from payload
® Reads past end of payload into adjacent memory
® Returns 64KB of secret server memory to attacker
® Attacker retrieves passwords, encryption keys, personal data

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 16/66

Heartbleed: Why Testing Failed

Why Wasn't This Caught?
® QOpenSSLis open source —1000s of eyes on code
® Extensive test suite
® Used by major companies
® But: tests assumed honest clients

® Never tested malicious inputs

Testing Limitations:
® Can't testall possible inputs
® Adversarial testing requires security mindset
® Memory errors don't always crash immediately

® May pass all tests but still be exploitable

The deeper issue:
® Testers think like developers
® Attackers think differently

® Can you test for all malicious
inputs?

You can’t test what you don’t think
to test

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 17/66

Section 3

The Limitations of Testing

The Fundamental Problem: Finite Tests, Infinite Possibilities

The core limitation of testing:
® Programs have infinite possible inputs
® We can only run finite number of tests

® Bugs hide in the untested cases

Example: Simple addition function add (x: Int64, y: Int64)
® Possible inputs: 264 x 264 = 2128 combinations
® That's roughly 3.4 x 1032 test cases
® At1billion tests/second: 10%! years to test all
® The universeis only 1.4 x 10'° years old!

Dijkstra’s quote (1972):
“Testing shows the presence, not the absence of bugs”

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 19/66

Why Testing Isn’t Enough

Testing can show the presence of bugs, never their absence. — Edsger Dijkstra
Fundamental Limitations:

® (Can only check finite number of inputs

® Can'ttestall possible executions (timing, concurrency)

® Can't test adversarial behavior

® Doesn't prove correctness, only finds bugs

Example: Testing add (x, y)
® |nfinite inputs: 264 % 264 combinations (64-bit ints)
® Would take billions of years to test all inputs
® Test 1000 cases? Still leaves 1039 untested

® Testing gives confidence, not certainty

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 20/66

What Testing Systematically Misses

Categories of bugs testing fails to catch:

1. Edge cases you didn't think of

® Extreme values, boundary conditions, unusual combinations
® Example: Ariane 5 (higher velocity than tested)

2. Rare timing-dependent bugs

® Race conditions, deadlocks, timing windows
® Example: Therac-25 (8-second window)

3. Malicious inputs

® Adversarial testing requires attacker mindset
® Example: Heartbleed (lying about payload size)

4. Complex interactions

® Emergent behavior from component combinations
® Exponential state space

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 21/66

The Testing Paradox

What testing IS good for: Testing is necessary but insufficient

® Findi i (t
inding bugs during developmen For safety-critical systems:

® Regression testing (so fixes don't break things) Testing alone is not acceptable

® |ntegration testing (components work together) * Medical devices, aerospace

® Performance testing autonomous vehicles

® User acceptance testing ® Financial systems,

. cryptography, infrastructure
What testing CANNOT guarantee:

® Need mathematical proof of

® Absence of bugs correctness

® Correctness for all inputs
® Freedom from race conditions

® Memory safety

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 22/66

Section 4

Formal Methods: A Better Way

What is Formal Verification?

Using mathematical logic to prove program Not just for math theorems:
correctness ® Hardware correctness (CPU designs)
Core Idea: ® Software correctness (compilers, 0S)
® Specify desired behavior ® Network protocols (TLS, consensus)
mathematically ® Cryptographic implementations
® Prove program meets specification ® Control systems (aircraft, medical)

® Computer checks the proof The line blurs:

® [fproofis valid, program is correct — for

® Systems require math to describe
ALL inputs

® Theorems may require computation
® Programs and proofs are deeply
connected (Curry-Howard)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 24/66

What Does "Specification” Mean?

A specification is a precise mathematical description of what a program should do

Examples:
® sort(list) returnsa permutation of the input where each element < the next
® encrypt(key, plaintext) produces ciphertextthat can only be decrypted with the
same key
e transfer(from, to, amount) decreases frombyamount and increases to by
amount

Specifications can be:
® Functional properties (what output for what input)
® Safety properties (bad things never happen)
® Liveness properties (good things eventually happen)
® Security properties (attackers can't learn secrets)

Verification proves: implementation matches specification

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 25/66

The Gold Standard: Proof

What is a mathematical proof?

Chain of logical reasoning from axioms to conclusion
Each step justified by previously proven facts

No gaps, no hand-waving

Checkable by an independent verifier

20th century logic breakthrough:

All mathematical reasoning reducible to small set of rules
Foundation: axiomatic set theory or type theory
Proofs are mechanical — computers can check them

Enables automated reasoning

Two complementary approaches:
1. Automated Theorem Proving: Computer finds proofs
2. Interactive Theorem Proving: Human guides, computer verifies

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 26/66

A Brief History of Formal Methods

The journey from mathematics to verified software:

1930s: Church, Turing, Godel — foundations of computation
1960s: Dijkstra, Hoare — program correctness logic

1968: De Bruijn — Automath, first proof assistant

1970s-80s: Development of type theory (Martin-L6f, Coquand)
1984: Rocq proof assistant created

2000s: Verified compilers (CompCert), OS kernels (seL4)
2010s: Lean development begins at Microsoft Research

2020s: Industry adoption, Lean 4 release, Lean FRO formed

From theoretical curiosity to practical tool for building trustworthy systems

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB)

27/66

Approach 1: Automated Theorem Proving

Goal: Find proofs automatically Strengths:

Technologies:

® Fully automated — no human intervention

® Very fast fi ificd i
SAT solvers: Boolean satisfiability (billions SRR RIS BRI

of variables) ® |ndustrial applications (hardware

ificati
SMT solvers: Satisfiability modulo verification)

theories (arithmetic, arrays, etc.) Trade-offs:

Resolution provers: First-order logic ® Power & efficiency at expense of
Computer algebra systems: Symbolic guaranteed soundness
mathematics ® May have bugs in implementation
Model checkers: Explore all possible ® Limited to specific domains
states

® (an fail to find proofs that exist

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 28/66

SAT/SMT Solvers in the Real World

Where automated theorem proving shines:

Hardware verification:
® |ntel, AMD use SAT solvers to verify CPU designs
® Find bugs in circuits with billions of transistors
® Prevents Pentium FDIV-style disasters

Software analysis:
® Microsoft's Static Driver Verifier uses SMT solvers
® Finds bugsin Windows device drivers
® Amazon'’s S2N uses SMT to verify crypto implementations

The trade-off:
® Automated tools themselves might have bugs
® No mathematical guarantee of soundness
® But: extremely practical for finding bugs quickly

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 29/66

Approach 2: Interactive Theorem Proving

Goal: Verify every step is correct Strengths:
How it works: ® Guaranteed soundness — small trusted
® Human provides high-level proof strategy kernel
® Computer fills in details and checks ® Works for any domain
correctness ® Proofs are artifacts — can be
® Every step justified (axioms & prior thms) shared/checked
® Produces proof objects — independently ® Extremely high assurance
checkable Trade-offs:
Used for: ® Requires human expertise and time
® Safety-critical systems (e.g. verified e Steep learning curve
compilers)

® Mathematical theorems

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 30/66

Interactive Theorem Proving: Success Stories

Real systems verified with proof assistants:

CompCert (using Rocq):
® Verified C compiler
® Proves: compiled code behaves exactly as source code specifies
® No compiler bugs can silently introduce errors

seL4 (using Isabelle/HOL):
® Verified 0S microkernel
® Proves: kernel has no buffer overflows, null pointer dereferences, etc.
® Used in critical systems (autonomous vehicles, medical devices)

Mathematical achievements:
® Four Color Theorem (Rocq)
® Feit-Thompson Theorem (Rocq)
® Kepler Conjecture (Isabelle/HOL and Lean)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 31/66

Automated vs Interactive: When to Use Each

Automated (SAT/SMT): . .
Interactive (Proof Assistants):
® Use when: Finding bugs quickl
SRUSSd i ® Use when: Need absolute certainty
® Guarantee: Might miss bugs, might have

false positives
® Effort: Low (push-button)

® Guarantee: Mathematical soundness

Effort: High (requires expertise)

Domain: General (any property you can

® Domain: Specific (bounded model
state)

checking)

The spectrum:
® Left (Automated): Fast, practical, but less certain
® Right (Interactive): Slow, demanding, but provably correct

® Lean's approach: Combine both! Automation within proof assistant framework

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 32/66

Section 5

The Tool: Proof Assistants

What is a Proof Assistant?

Interactive software for constructing formal proofs:
® User provides guidance, system ensures correctness
® Type system = logical system
® Programs = Proofs (Curry-Howard correspondence)
® Automated tactics for common patterns
Supports both:
® Mathematical reasoning (theorems, lemmas, propositions)
® Systems reasoning (software/hardware correctness)
Major proof assistants:
® Rocq (France) — used for CompCert verified C compiler
® [sabelle/HOL (Cambridge, TU Munich) — seL4 verified OS kernel
® Agda (Sweden) - Homotopy type theory
® Lean (Microsoft Research - Lean FRO) — mathematical proofs + systems

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 34/66

The Curry-Howard Correspondence

An insane discovery: Programs and proofs are (secretly) the same thing!

In Logic:

Propositions

Proofs

Implication (A — B)
Conjunction (A A B)
Truth

The correspondence:

In Programming;:

Types

Programs

Function types
Product types (tuples)
Unit type

® Writing a program of type 1'= proving proposition T’
® Type-checking = proof-checking
® Running a program = simplifying a proof

This is why we can use programming languages as proof assistants!

PROOF101 Week 1 Introduction

Daniel Dia & Guest Lecturers (AUB)

35/66

The Lean Theorem Prover

Bridging automated and interactive
approaches

Lean’s Philosophy:

® Situate automated tools in framework
supporting user interaction

® Construct fully specified axiomatic
proofs

® Support reasoning about math AND
complex systems

® Based on dependent type theory
(Calculus of Constructions)

PROOF101 Week 1 Introduction

Unique Features:

® powerful automation (tactics, decision
procedures)

® Small trusted kernel (De Bruijn
criterion)

® Metaprogramming in Lean itself

Real-world Impact:
® Lean FRO: Non-profit development
® Used in industry for verified systems
® Mathlib: Massive math library

® Active formal verification research

Daniel Dia & Guest Lecturers (AUB) 36/66

Section 6

Why Lean4?

Lean’s Dual Nature

As a Proof Assistant: As a Programming Language:
® |nteractive theorem proving ® Functional programming
® Dependent type theory ® Programs with precise semantics
® Verified mathematical proofs ® Reason about computations
® Guarantees correctness ® Extract verified code
® Curry-Howard correspondence ® Lean implemented in itself!

“Programs are proofs, proofs are programs”

— (Oversimplified) Curry-Howard Correspondence

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 38/66

Why Lean4 for This Course?

1. Modern & Active
® Developed at Lean FRO, rapidly evolving
® Regular releases, active development, growing ecosystem
2. Best of Both Worlds
® Ppowerful automation (tactics)
® Verification guarantees (kernel)
® SMT solver integration
3. Practical Programming Language
® Real language, not just toy — can write actual applications!
® Good performance
4. Extensible
® Metaprogramming in Lean itself
® (Create custom tactics, domain-specific automation
5. Strong Community
® Excellent documentation with active forums and Discord
® Industry adoption

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 39/66

Mathlib: Lean’s Mathematical Library
One of Lean's killer features: Mathlib

What is Mathlib?
Massive library of formalized mathematics

Over 1 million lines of code
Thousands of definitions and theorems

From basic algebra to more advanced topics in math

Why it matters:

Don't start from scratch — build on existing work
Community-maintained, peer-reviewed

Used in both research mathematics and verified systems
We'll explore contributing to Mathlib in Week 6

Standing on the shoulders of giants

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 40/66

Dependent Types: The Key Innovation

What are Dependent Types?
® Types that can depend on values
® Types become first-class citizens
® Express properties impossible in
traditional type systems
Power:

® Catch errors at compile-time that
testing would miss

® Encode invariants in types
® Eliminate entire classes of bugs

® “If jt compiles, it’s correct”

Examples:

Vector a n-
list of exactly n elements

Matrix m n-m X n matrix
Fin n - numbers less thann

{x : Nat // x < 10}
— numbers < 10

We'll explore this deeply in Week 2!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 41/66

Dependent Types: Making Invalid States Unrepresentable

Traditional types:
® |ist Int-any listofintegers (could be empty, length 5, length 1000)
® Int - anyinteger (could be -1000, 0,1000000)

Dependent types encode constraints:
® Vector Int 5 -listof exactly 5integers (can’t be empty or length 4)
® Fin 10 -integer from O to 9 (can't be 10 or -1)
e {x : Int // x > 0} —positive integers (can't be 0 or negative)

The power:
® Array access with Fin nindex — no bounds checks needed!
® Divisionby {x : Int // x # 0} - no division by zero!
® Matrix multiplication with compatible dimensions — no dimension mismatch!

The type system prevents you from writing buggy code

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 42/66

Lean's Approach: Strict, Pure, Functional

Three key properties:
1. Strict

® Arguments fully computed before
function execution

® Like most languages (C, Java, Python)
® Predictable evaluation order
2. Pure
® No hidden side effects
® Same input always gives same output

® Enables equational reasoning

PROOF101 Week 1 Introduction

3. Functional
® Functions are first-class values
® Evaluation like mathematical expressions
® |mmutable data structures

® Higher-order functions

Result: Programs easier to reason about and
verify

Daniel Dia & Guest Lecturers (AUB) 43/66

Why Purity and Immutability Matter for Verification

Pure functions are easier to reason about:

Impure (with side effects):

f(x) might return different values each time
Might modify global state, file system, network
Difficult to predict behavior

Hard to verify mathematically

Pure (no side effects):

T (x) always returns same value for same input

No hidden modifications

Can replace T (x) with its result (referential transparency)

Easy to reason about mathematically: if z = y, then f(z) = f(y)

Purity enables equational reasoning — the foundation of formal verification

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 44/66

Section7

Snapshot from Week 2: The Lean Architecture

From Source Code to Kernel

Lean'’s architecture: 2. Elaborator (untrusted):

Trusted kernel with untrusted elaborator e Fillsin implicit arguments
. ® Resolves type class instances
1. Source code (what you write):

) ® Expands macros and notation
® High-level, readable syntax

] o ® Compiles tactics to proof terms
® Type inference, implicit arguments

® Tactics, notation, macros 3. Kernel (trusted):

® Small, verified core (~10k lines)
® Type checks all terms
® Ensures logical soundness

® De Bruijn indices, no names

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 46/66

The De Bruijn Criterion

De Bruijn criterion: Trust only a small, verified kernel

Named after: Nicolaas Govert de Bruijn (1918-2012)
® Dutch mathematician
® (Created Automath (first proof assistant)

® Emphasized minimal trusted base

The principle:

® Keep the trusted core as small as possible

All proof terms flow through the kernel

Bugs in elaborator don't compromise soundness

® Kernelis small enough to verify by hand

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 47/66

Why This Separation Matters

Benefits:
® Elaborator can be complex without risking soundness
® Bugs in tactics don’t compromise proofs
® Easy to add new features (tactics, notation)

® Kernelis small enough to verify by hand

Example: The simp tactic
® Elaborator: Complex rewrite engine (thousands of lines)

® Qutput: Simple chain of rewrite proof terms

Kernel: Verifies each rewrite is valid

If simp has a bug, kernel rejects the proof!

Words to live by: "Don’t trust, verify” — Even if elaborator is buggy, kernel catches it!

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 48/66

What Do We Actually Trust?

The trust stack in Lean:

1. The kernel (~10,000 lines of code)
® Small enough to audit by hand
® Formally specified
® Multiple independent implementations exist
2. The type theory (Calculus of Inductive Constructions)
® Well-studied mathematical foundations
® Known to be consistent (relative to weaker systems)
3. The compiler/interpreter
® For execution (not for proofs)
® (Can be buggy — doesn't affect soundness of proofs

What we DON'T need to trust:
® The elaborator, tactics, or any automation
® External libraries (Mathlib)

® QOur own proof code
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 49/66

Section 8

What Could Have Been Prevented?

From Runtime Disasters to Compile-Time Errors

Without FV: With FV:
® Write some code ® Write code with formal specifications
® Test it (hoping you test the right cases) ® Attempt to compile
® Deployit ® Type system / proof checker rejects
® Bug triggers at runtime invalid code
® System crashes/ people may die /a lot ® Bug caught at compile-time
of money is lost ® Fix it before it ever runs

The fundamental shift formal verification enables:
Turning catastrophic runtime crashes into compile-time type errors

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 51/66

Formal Verification: The Preventions

What could FV have prevented?
Ariane 5 ($370M loss):
® BoundedInt 0 32767
® Type system catches overflow
® Assignment must type-check

® Error at compile-time

Therac-25 (6 deaths):
® Verify all interleavings
® Prove: “beam = shield”
® |TL:[J(beam — shield)
® Race condition: Proof fails

PROOF101 Week 1 Introduction

Heartbleed (billions lost):
® Array a n-lengthintype
® Type error on bounds violation

® n < src.length enforced

Violation: Type error

The Bottom Line:
Formal verification turns
catastrophic crashes
into compiler errors.

Daniel Dia & Guest Lecturers (AUB)

52/66

Ariane 5: How Types Would Have Prevented the Disaster

The bug in traditional C:
® double (64-bit float) cast to int16_t (16-bit signed int)
® Type system allows this dangerous conversion
® Qverflow is silent — no error, just wrong value

® Wrong value causes system crash

With dependent types:
® Velocity type: Velocity : Float
® Targettype: BoundedIntl6 : {x : Int // -32768 < x < 32767}
® Conversion requires proof: -32768 < velocity < 32767
® Proof fails for Ariane 5's velocity
® Compilation fails — developer forced to fix before launch

Type error instead of $370M explosion

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 53/66

Therac-25: How Model Checking Would Have Prevented Deaths

How formal verification could have helped:
® Model checking can explore all possible interleavings
® Linear temporal logic to specify safety properties
® “Safety interlock must ALWAYS engage before beam fire”

The specification in temporal logic:
® [J(beam_active — shield_engaged)
® “Always” (L) means in every possible execution
® “Implies” (—) means beam cannot fire without shield
® Model checker would explore all possible timing interleavings
® Race condition would cause the proof to FAIL
Result:
® Bug found during development, not after deployment
® Fix the race condition before any patient is harmed

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 54/66

Heartbleed: How Dependent Types Would Have Prevented Exposure

How formal verification could have helped:
® Dependent types: length encoded in type
® Array « n-array of exactly n elements
® Type system prevents out-of-bounds access at compile-time
® Don'’t rely on programmers remembering to check bounds — make it impossible to forget

With dependent types, the bug is impossible to express:
® The actual payload size is part of its type
® Compiler enforces: can't copy more than actual size
® Attempting to violate bounds = compile-time type error
® No runtime check needed — guaranteed safe by construction

The guarantee:
® |f code compiles, bounds are correct
® No way to express buffer over-read in well-typed code

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 55/66

The Limits of Verification

The Core Guarantee

If it compiles in a verified system, certain classes of bugs cannot exist

What can be eliminated: What still requires work:
® Null pointer dereferences ® Specification correctness
® Buffer overflows ® Performance bugs
® Integer overflows ® Hardware failures
® Type mismatches ® User errors

- R e (7 e ee S i) “The weakest link in the security chain is
® |ogic errors (if specification is correct) the human element.”

— Kevin Mitnick

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 56/66

The Specification Challenge

Verification is only as good as the specification
The problem:
® Formal verification proves: implementation matches specification
® But what if the specification itself is wrong?
® Ex: specifying “system should encrypt data” but forgetting to specify “key must be secret”

Real-world example:
® Boeing 737 MAX crashes (2018-2019)
® Software worked as specified, but specification didn’t account for sensor failures
® 346 people died
The lesson:
® Verification requires correct specifications (that are still written by humans)

® This is why domain expertise + formal methods = crucial

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 57/66

Section 9

Course Structure

What We’'ll Cover in PROOF101

Week 1: Why Our Code Breaks (and How to Fix It) (today!)

Week 2: Dependent Type Theory (Daniel Dia)

Week 3: Functional Programming (Daniel Dia)

Week 4: Intro to Tactic-based Proving (Guest Session, Dr. Nadim Kobeissi)
Week 5: Proofs & Semantics (Daniel Dia)

Week 6: Contributing to Mathlib (Guest Session, Rida Hamadani)

Week 7: Proving Security in Software (Guest Session, Dr. Nadim Kobeissi)
Week 8: Monads, Tactics, and Applications (Guest Session, Dr. Robert Lewis)
Week 9: The Broader Landscape (Rust) and Project Kick-off (Daniel Dia)
TBD: The Mathematical Foundations of Proof Assistants (Guest Session, Dr. Assaf Kfoury)
Week 10: Project Showcase & Wrap-up (Entire team)

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 59/66

How to Succeed in This Course

Time commitment (different every week): Resources & Textbooks:
® Attend weekly lectures (1.5-2 hours) ® Theorem Provingin Lean 4
® Complete weekly programming ® Functional Programming in Lean
challenges (2-3 hours) ® The Hitchhiker's Guide to Logical
® Read assigned textbook chapters Verification

® Course website:

® Start assignments early — Lean has a bit

of a learning curve))
® QOther links are on the course website

® Practice regularly — programming (Discord & WhatsApp)

requires repetition

® Don't be discouraged — everyone
struggles at first

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 60/66

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

Section 10

Summary

Week 1 Summary

The Problem:
® Software bugs are catastrophically expensive
® Testing alone cannot guarantee correctness
® Safety-critical systems need stronger guarantees

The Solution:
® Formal verification uses mathematical proofs
® Proof assistants make verification practical
® Dependent types catch bugs at compile-time
® |nteractive theorem proving provides highest assurance

Why Lean4:
® Combines automation with verification guarantees
® Modern, practical programming language
® Strong type system with dependent types

® Active community and ecosystem
PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 62/66

Section 11

Assignments & Next Steps

This Week’s Assignments

Readings (see the course website)

® Theorem Proving in Lean 4 — Chapter 1
® Functional Programming in Lean — Chapter 1

® Course website introduction and Lean setup guide

Install the Lean4 VSCode extension
® Say "Hi"”in Lean Zulip community (Lebanon or/and New Members channels)
Complete PROOF101 Quiz 1

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB) 64/66

Questions & Discussion

Questions?

Join our community:
Discord: Link on website
WhatsApp: Link on website
Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mailaub.edu

PROOF101 Week 1 Introduction Daniel Dia & Guest Lecturers (AUB)

65/66

PROOF101;: Formal Verification &

Proof Assistants
Google Developer Groups @ AUB
& AUB Math Society

“Testing shows the presence, not the Spring 2026
absence of bugs.”
— Edsger W. Dijkstra Week 10f 10
Why Our Code Breaks (and

(#][=) How to Fix It)
][5

MA%EMAHBS Daniel Dia & Guest Lecturers
[ETY S

https:
//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

	Introduction
	The High Cost of Software Bugs
	Ariane 5 Rocket (1996)
	Therac-25 Medical Device (1985-1987)
	Heartbleed (2014)

	The Limitations of Testing
	Formal Methods: A Better Way
	The Tool: Proof Assistants
	Why Lean4?
	Snapshot from Week 2: The Lean Architecture
	What Could Have Been Prevented?
	Course Structure
	Summary
	Assignments & Next Steps

