PROOF101: Formal Verification &

Proof Assistants
Google Developer Groups @ AUB

“In mathematics, you don’t 2 AUB Math Society
understand things. You just get used Spring 2026
to them.”
— John von Neumann Week p) Of 10
Dependent Type Theory

B Daniel Dia & Guest Lecturers

@ https:

MATHEMATICS

SOCIETY //danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

Section 1

Lambda Calculus: The Foundation

Why Lambda Calculus?

The Problem: Programming languages are complex with lots of syntax.

The Solution: Lambda calculus is a theory of functions with only:
® 3 pieces of syntax
® 1rule of computation

® Ability to express anything computable

Lambda calculus gives us a mathematical foundation to reason about computation itself (and
LARGELY predates modern programming languages).

Key point: Just like arithmetic has addition and multiplication as primitive operations, lambda
calculus has function application as its only primitive operation.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 3/118

Functions as Mappings

For our intents, a function is simply a mapping of inputs (domain) to outputs (codomain).
Example: f(z) = 22 maps:

° 214

°* 39

® 1 z2 (for arbitrary x)

Instead of writing f(x) = 22 (like in math), in the Lambda Calculus, we would write: Az. 22

Read as: "lambda 2 maps to 22"

Note: Nothing special about " \” - could be "ballout”, "jazar”, or "douleb”. The symbol is arbitrary!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 4/118

Lambda Abstraction Syntax

Lambda abstraction: \z. M
®)indicates we're defining a function
® 1 istheinput variable (parameter)
® . separates parameter from body

® Mis the output expression (body)

Examples:

® \x.x + 1 (successor function)

® \y.y X y(square function)

® A\n.Am.n + m (addition, so two parameters!)
A Az, f(f(x)) (apply function twice)

InLean: fun X = X + lorA X = x + 1

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 5/18

Beta Reduction: Function Application

Beta reduction (8-reduction): Applying a function to an argument
Rule: (A\z. M) N — 5 M[N /x]
Meaning:

® (Az. M) is the function definition

® Nisthe argument being supplied

® M[N /z] means: "in M, replace every x with N”

Simple example:
® (M\.yxy)d—55x5=25

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 6/118

Beta Reduction: Complex Example

Let's evaluate: (Af. Az. f(f(z))) (A\y.y+1)2

Step-by-step reduction:

(Af- Az f(f(z)) Ay.y +1)2
=(Az. Ay-y + 1)((A\y.y + 1)(2))) 2
=y y+D((Ay-y +1)(2))
=\y.y+1)(2+1)
=(Ay.y +1)(3)
=3+1
=4

Pro tip: Work from outside in ("leftmost-outermost” strategy)

(Apply first arg)
(Apply second arg)
(Inner reduction)
(Arithmetic)
(Final reduction)
(Result)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 7/ms

More Beta Reduction Examples

Example 1: Identity function
(Az.2)5 =55

Example 2: Constant function

(Az. A\y.2) 53 =5 (Ay.5)3 =4 5

Example 3: Function composition
(A Ag. Ax. f(g(x))) Ay.y x2) (Az.2+1)3
=(Ay.y x 2)((Az. 2+ 1)(3))

=(A\y.y x 2)(4)
=4x2=8

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 8/118

Alpha Conversion: Renaming Variables

Alpha equivalence (a-equivalence): Functions are equivalent if they differ only in variable
names

Examples (all equivalent):
* \z.x?
* \y. 2
*)z 22

\banana. banana®

The choice of variable name doesn't change what the function does!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 9/118

Alpha Conversion: Why It Matters

Variable capture problem: Must rename to avoid conflicts

Bad substitution:
(Az. \y.x)y =45 Ay.y (wrong)

Correct substitution (with cv-conversion):

Az My.x)y =, Az Ay x)y
—5 Ay'.y (correct)

Rule: Rename bound variables before substitution to avoid capture

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 10/118

Lambda Calculus in Lean

Lean uses lambda calculus as its foundation!

-- Lambda abstraction (two syntaxes)
#check fun x : Nat = x + 1
#check A x : Nat = x * x

-- Function application
#eval (fun x = x + 1) 5 -- 6

-- Higher-order functions
def twice (f : Nat » Nat) (x : Nat) : Nat :=

f (f x)
#teval twice (fun x = x + 1) 5 -- Result: 7
#eval twice (fun x = x * 2) 3 -- Result: 12

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 1/18

Curryingin Lean

Currying: Multiple parameters via nested functions

-- Explicit currying
def add : Nat > Nat > Nat :=
funm = funn = m+n

#eval add 3 4 -- Result: 7
#teval (add 3) 4 -- Result: 7 (same thing!)

-- Syntactic sugar (same as above)
def add' (m : Nat) (n : Nat) : Nat :=m + n

-- Partial application
def add5 := add 5
#eval add5 10 -- Result: 15

Key benefit: Partial application lets us create specialized functions!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 12/118

Higher-Order Functions

TL;DR: Functions can:
® Take functions as inputs

® Return functions as outputs
Example: A f. \z. f(f(x))
This expression takes a function fand returns a new function that applies f twice.

Practical examples:
® map: Apply function to every list element
e filter: Keep elements satisfying a predicate

® compose: Chain two functions together

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 13/118

Higher-Order Functionsin Lean

Here are some ways to write higher-order functions in Lean for you to contemplate:

-- Function that applies f n times

def applyN (f : Nat > Nat) : Nat > Nat > Nat
| 0, x = x
| n+1, x = f (applyN f n x)

#teval applyN (- + 1) 5 0 -- Result: 5

-- Function composition

def compose (f : Nat > Nat) (g : Nat > Nat) : Nat > Nat

fun x = f (g x)

def double := (- * 2)

def increment := (- + 1)
def doubleAndIncrement := compose increment double
#teval doubleAndIncrement 5 -- Result: 11 (5%2 + 1)

PROOF101 Week 2 Dependent Type Theory

Daniel Dia & Guest Lecturers (AUB)

14/118

Currying: Multiple Arguments

Lambda abstractions only take one argument. How do we handle multiple inputs?
Currying: Return a function that takes the next argument
Example: Addition

add = A x. \y.x +y
add1l =5 Ay.1+y
(add1)2 —=51+2=3

Named after logician Haskell Curry.

Key benefit: Partial application! add 1 is avalid function.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 15/118

Encoding Booleans

We can encode data types as functions! (Church encodings)

Church Booleans:
® true = Ax. \y. x (returns first argument)

® false = Ax. \y.y (returns second argument)

If-then-else:
if =Ab. x. \y.bxy

If bis true, returns ;; if false, returns g!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 16/118

Church Booleans: How They Work

Recall:
® f{rue = A\r. \y.x
® false = Az. \y.y
Example evaluation:
trueab = (Ax. \y.x)ab
—5 (Ay.a)b
—>B a

falseab = (Az. \y.y) ab
—5 (A\y.y) b
—5b

Insight: Booleans are choice functions!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 17/118

Boolean Operations

Boolean operations using Church encoding:
NOT:
not = Ap. p false true
AND:
and = Ap.\q.pqp
If pis true, return g; if p is false, return p (false)

OR:
or = Ap.\q.ppq

If pis true, return p (true); if p is false, return ¢

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

18/118

Boolean Operations: Example

Let's evaluate: and true false

and true false
= (Ap. A\q. p qp) true false
= (Aq. true q true) false
= true false true
= (Az. \y. x) false true
= (A\y. false) true
= false

Result: false (as expected!)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

19/18

Encoding Numbers (Church Numerals)

We can even encode natural numbers as functions!

Church Numerals: A number n is a function that applies f exactly n times
® 0= \f.\x.x (@apply fzero times)
® 1 =\f.\x. fx (apply fonce)
® 2=M\f.\z. f(fx) (apply ftwice)
e 3=\f.A\z. f(f(fx)) (apply fthree times)

Insight: A number is an jterator!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 20/118

Church Numerals: Successor

Successor function: Add one to a Church numeral

succ = An. Af. dx. f(n fz)

How it works:
® Take a number n (which applies fn times)
® Apply ftotheresultof n fx
® This gives usn + 1 applications of f

Example: succ 2

succ2 = (An. Af. dx. f(n fz)) (Af. Xz, f(fz))
=g Af Az f(Af 22 f (f'2')) f)
S5 M. Az F(f (fo)) = 3

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 21/118

Church Numerals: Addition

Addition: Add two Church numerals

add = dm. dn. A\f. Az.m f(n fx)

How it works:
® Apply fn timesto x (giving us n)
® Then apply fm more times

® Total: m + n applications of f

Example: add23 =5
* 2f@Bfx)=f(f(f(F(f2)) =5

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 22/118

Church Numerals: Multiplication

Multiplication: Multiply two Church numerals

mult = dm. An. \f.m (n f)

How it works:
® n fcreates a function that applies fn times
® m (n f) applies this function m times

® Total: m x n applications of f

Example: mult 2 3
® Apply " fthree times” twice

e =fUffF(f(f2)) =6

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 23/118

Simply Typed Lambda Calculus

Problem: Nothing stops nonsense like:
® Applying NOT to a number
® Adding a boolean to a string

® Using 42 as a function

Solution: Add a type system

Assign types to terms:
® t{rue : Bool
® 3: Nat
®)\z : Bool. not x : Bool — Bool

® Az : Nat. \y : Nat.x + y : Nat — Nat — Nat

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 24/118

Type System Rules

Type checking rule: Can only apply f : A — Bto arguments of type A

Valid applications:
® (Az:Nat.z 4 1): Nat — Nat
® Applyto 5 : Nat (correct)
® Result: 6 : Nat

Invalid applications:
® Apply to true : Bool (wrong)
® Type error: expected Nat, got Bool

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 25/118

Why Do We Care About Types?

Types catch errors at compile time:
® (Ax : Nat.z + 1) 5 (correct) (type checks)
® (A\x : Nat.z + 1) true (wrong) (type error!)

Types are documentation:
® map: (A — B) — List A — List B

® Type signature tells us what the function does!

Types enable optimization:
® Compiler knows exact memory layout
® Caninline functions safely

® Enables aggressive optimizations

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 26/18

Types as Specifications

In dependent type theory: Types can express correctness properties

Examples:
® Vector Nat 5:alist of exactly 5 natural numbers
e sort : List Nat » {xs : List Nat // xs.Sorted}: returnsasorted list

e safeDiv : (n : Nat) > (d : Nat) > (d # @) > Nat:division requires
proof denominator is non-zero

Motto: "If it compiles, it's probably correct”

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 27/18

Curry-Howard Correspondence (1)

As it turns out, there's a deep connection between Type Theory and Logic:

Programs <> Proofs
Types <> Propositions
Terms <+ Proofs

- & =

Examples:
® Type A — B = Proposition"A implies B”
® Termoftype A — B = Proofof"A — B"
® Type checking = Proof checking!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 28/18

Curry-Howard: More Correspondence Examples

Extended correspondences:

Producttype A x B <> Conjunction A\ B
Sumtype A+ B <+ Disjunction AV B
Empty type <> False
Unittype <+ True
Type inhabitation <> Provability

Key point: A proof is a program, and vice versal!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 29/18

Curry-Howard: Modus Ponens Example

Logic: If we have A = Band A, we can derive B

As a function:

-- The type is the proposition
def modus_ponens {A B : Prop} (hl1 : A > B) (h2 : A) : B :=
hl h2 -- Apply the implication to the hypothesis

Observations:
® Type signature = Logical statement
® Function body = Proof

® Type checking = Proof verification

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 30/118

Curry-Howard: Hypothetical Syllogism Example
Logic (A = B) = (B = () = (4 = (O)
As a function:

def chain {A B
fun h : A =

C: Prop} (f : A>B) (g:B=>C):A>C:=
g (f h)

This is just function composition!
® |ogical proof = Function composition

® Proving theorems = Writing programs

Key point: Writing programs = Constructing proofs!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 31/118

Curry-Howard: Digression on Uninhabited Types

Empty type: A type with no values
In logic: Corresponds to False

Key property: From False, anything follows (ex falso quodlibet)

If we have a term of type Empty, we can construct a term of any type:

absurd : Empty — A

Why? Because we can never actually call this function (no terms of type Empty exist)!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 32/118

From the Lambda Calculus to Dependent Types

The Lambda Calculus gave us:
® Functions (A-abstractions)
® Function application (8-reduction)

® Higher-order functions

Simply Typed Lambda Calculus added:
® Type system for safety
® Type checking

® Curry-Howard correspondence

But we can go further...

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 33/118

The Limitation of Simple Types

In simple types, we have things like:
® List Nat: list of natural numbers
® List String: list of strings
® List Bool: list of booleans

But these types don't tell us:
® How many elements in the list?
® |sthe list sorted?

® Are all elements positive?

(Non-trivial) Solution: Let types depend on values!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 34/118

What If Types Could Depend on Values?

Dependent types: Types that depend on values (as the name implies)

Examples:

® Vector Nat 3:alistof exactly 3 natural numbers

Vector Nat n:alist of exactly n natural numbers
® Matrix m n:anm X m matrix

® Fin n: natural numbers less thann

This is Dependent Type Theory!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 35/118

Section 2

Types

Typesin Lean

Types o, 7, v:
® Type variables: o, 5,y
® Basictypes: Nat, Int,Bool,String
® Complextypes: T'g; ... o (e.g. List (Option Nat), but don't worry about it for now)

Some type constructors are written infix: — (function type)

Function arrow is right-associative:
01 = 09 > 03 > T =0 = (0yg = (03 > 7))
Polymorphic types use type variables:

#check fun {a : Type} (x : o) = x --id : a » a (type)
#icheck List -- Type » Type (type constructor)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 37/18

Type Examples (in Lean)

Types indicate which values an expression may evaluate to.

#check N -- Type (natural numbers)

#check 7 -- Type (integers)

#check Empty -- Type (no values, False)

#check Unit -- Type (one value, trivial type)
#check Bool -- Type (true and false)

-- Function types

#check N > 7 -- Nat to Int

#icheck Z > N -- Int to Nat (partial!)
#icheck Bool > N > Z -- Bool » (N » 7)

#check (Bool » N) » Z -- Different since it takes a function
#check N > (Bool » N) » 7 -- Explicit parentheses

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 38/118

More Type Examples (in Lean)

-- Polymorphic types

#check List N -- List of natural numbers
#check List (List String) -- List of lists of strings
#tcheck a > «o -- Generic identity function type

-- Function types with multiple arrows

#check Nat » Nat > Nat -- Two arguments, one result
#check (Nat > Nat) > Nat -- Takes function as argument
#check Nat > (Nat - Nat) -- Returns a function

Key point: Parentheses matter!
e Nat > Nat > Nat=Nat > (Nat > Nat)
e (Nat »> Nat) = Natisdifferent (higher-order)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 39/18

Type Constructors

Type constructors build new types from existing ones

-- List is a type constructor: Type > Type

#check List -- Type > Type

#check List Nat -- Type

-- Product types (tuples)

#check Nat x String -- Type

#check (3, "hello”) -- Nat x String
-- Sum types (disjoint union)

#check Nat [String -- Type

#check Sum.inl 42 -- Nat String
#check Sum.inr "hi” -- Nat B String

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 40/18

Option Type

Option: Represents a value that may or may not exist

-- Option type (maybe)

#check Option Nat --
#check some 5 -
#check none ==

-- Useful for partial functions

Type
Option Nat (has a value)
Option Nat (no value)

def safeHead (xs : List Nat) : Option Nat :=
match xs with
| [1 = none
| x :x _ = some x

#teval safeHead [1, 2, 3] -- some 1

#teval safeHead [] -- none

Key benefit: No null pointer exceptions!

PROOF101 Week 2 Dependent Type Theory

Daniel Dia & Guest Lecturers (AUB)

4/

Product Types (Pairs)

Product type A x B: Contains a value of type A AND a value of type B

Examples:
® Nat x String:anumberand astring
e (3, "hello”) : Nat x String
® Bool x Bool x Bool:threebooleans

Access components:
® p.1:thefirst component

® p.2:thesecond component
In logic: Corresponds to conjunction (A A B)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 42/118

Sum Types (Disjoint Union)

Sum type A + B: Contains a value of type A OR a value of type B

Constructors:
e Sum.inl : A > A + B (leftinjection)
® Sum.inr : B 2 A + B (rightinjection)

Examples:
e Sum.inl 5 : Nat + String: anumber
e Sum.inr "hello” : Nat + String: astring

In logic: Corresponds to disjunction (A V B)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 43/118

Section 3

Terms

Terms

The terms (expressions) of type theory:
® Constants: ¢ (built-in or defined values)
® Variables: x (parameters or bound variables)

® Applications: ¢t u (function applied to argument)

Lambda abstractions: fun x +— t (anonymous functions)

Application is left-associative:

fxyz=((fx)y)z

Use #icheck to see the type of any term!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 45/118

Term Examples

Consider how Lean allows us to construct simple lambda abstractions, abstractions with
multiple (curried) parameters, and higher-order logic.

-- Simple lambda abstractions

#check fun x : N = x -~ N> N
#check fun (x : N) = x + 1 - N> N
-- Multiple parameters (curried)

#tcheck fun (x y : N) = x +y -~ N>N>N

-- Higher-order functions
#tcheck fun f : N> N = fung : N> N =
fun h : N> N = fun x : N = h (g (f x))

-- More concise (type inference!)
#icheck fun (f g h : N> N) (x : N) = h (g (f x))

Note: functions are treated as "first-class values”; we don't need to annotate every
intermediate type!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 46/118

Type Inference

Type inference: Lean can often figure out types automatically!
We will soon cover in detail exactly how Lean does that.

-- Explicit types
#check fun (x : Nat) = x + 1 -- Nat > Nat

-- Inferred types
#check fun x = x + 1 -- Nat > Nat (inferred!)

-- Fully polymorphic
#tcheck fun x = x -- a > a (works for any type!)

-- Context helps inference
def double (n : Nat) := n % 2
#check fun x = double x -- Nat » Nat (from double's type)

Best practice: Omit types when clear, add them for clarity

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 47/18

Opaque Constants and Axioms

After the opaque commands, we have no information about a and b beyond their type.

-- Opaque constants (axioms without proofs)
opaque a : Z

opaque b :
opaque f :
opaque g :

NNKN
NN

>
5151

#check fun x : Z g (f (g ax)) (gxb)

=
#icheck fun x = g (f (g a x)) (g x b) -- Type inferred
X -- Fully polymorphic

#check fun x =

Opaque: Declared but not defined (typically used in conjuction with axioms)

For example:

opaque a : Z

opaque b : Z

axiom a_less_b :
a<hb

PROOF101 Week 2 Dependent Type Theory

Daniel Dia & Guest Lecturers (AUB)

48/118

Section 4

Type Checking and Type Inference

Type Checking and Type Inference

Two key problems in type theory:

Type Checking: Given term ¢ and type o, does ¢ : g7
® Decidable for simple type theory
® |ean's kernel checks all proofs

® Ensures logical soundness

Type Inference: Given term ¢, find its type o
® Also decidable for simple types
® |ets us omit type annotations

® Makes code more readable

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 50/118

Type Judgments

Typejudgment. C' Ht: o
Read: "In context C' term ¢ has type ¢”

Context C: Tracks local variable types
o C={x:01,%5:09,..}
® Variables and their types
® Built up during type checking

Example:
{z : Nat,y : Bool} - x + 1 : Nat

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 51/118

Typing Rules

Rules are written as a fraction. In formal logic, these are inference rules: if the stuff on top (the
premise) is true, then the stuff on the bottom (the conclusion) is also true.

Constant rule:

mCst if cis declared with type o

Variable rule:

mvar |fﬁl?O-EC

Application rule:
Ctt:oc—=717 Clhu:o

Chtu:7

App

Abstraction rule:
C,x:obFt:T

Ck(funz:o1t):0—>T1

Fun

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 52/118

Type Checking Examples (1)

Check: - (Az : Nat.z + 1) 5 : Nat

Step 1: Check the function
® Incontext C' = {z : Nat}
® Body x + 1 has type Nat
® By Abstraction rule: - Az : Nat. x + 1 : Nat — Nat

Step 2: Check the application
® Function: Nat — Nat
® Argument: 5 : Nat
® By Application rule: Result type is Nat (correct)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 53/118

Type Checking Examples (2)

Check: { f : Nat — Bool} - f5 : Bool

Given:
e Context: C' = {f : Nat — Bool}
® Term: f5

Type checking:
e C'F f: Nat — Bool (by Variable rule)
® (C'F 5 : Nat (by Constant rule)
o C'F f5: Bool (by Application rule) (correct)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 54/118

Type Checking Examples (3)

Check: = (Af : Nat — Nat. Az : Nat. f(fx)): 7?7

Step 1: Check inner lambda
® Context: C' = {f : Nat — Nat, z : Nat}
® Body: f(fx) hastype Nat
® Inner lambda: Nat — Nat

Step 2: Check outer lambda
® Context: C'= {f : Nat — Nat}
® Body: Az : Nat. f (fx) has type Nat — Nat
® Outer lambda: (Nat — Nat) — (Nat — Nat) (correct)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 55/118

Sidenote: Variable Shadowing

Shadowing: Inner variables hide outer ones with the same name

Example:
Az : Nat. Az : Bool. x

Which 2? The inner one (Bool)!

Context tracking:
® Quter context: {x : Nat}
® Inner context: {x : Nat, z : Bool}

® Rightmost occurrence shadows: x : Bool
Best practice: Avoid shadowing (confusing!)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 56/118

Section 5

Type Inhabitation

Type Inhabitation

Type Inhabitation Problem: Given a type o, find a term of that type

Key fact: This problem is undecidable in general!
® Some types have no inhabitants (like Empty)
® Finding inhabitants = constructing proofs

® By Curry-Howard: Finding proof = Solving halting problem

Why do we care? Lean’s exact? tactic tries this! (don’t worry about this too much, we will get
more into tactics later)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 58/118

Type Inhabitation: Strategy

Recursive procedure (doesn’t always terminate):
1. Ifo=7—uvtryfun x = _
2. Look for constants/variablesc : 7y = - = 7y — O

3. Buildterm ¢ _ ... _and recursively fill holes

Example: Inhabit Nat — Nat
® Try: fun x = _
® |ook for: variable = : Nat

® Solution: fun x = x (identity function)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 59/18

Type Inhabitation Example

Problem: Inhabit (« - 8 —) = (B > a) =) > a — 7y

opaque o : Type
opaque B : Type
opaque y : Type

def someFunOfType : (a > B> y) > ((B>a)>B)>a»>y :=
fun f ga = fa (g (fun b = a))
—f:ra>B>y
-g:(Bra)>p
--a:a«a
-- Need to produce: y
-- f needs: a and B
-- We have: a : «
-- For B: use g applied to (fun b = a)
-- Result: f a (g (fun b = a)) : y (correct)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 60/118

Type Inhabitation: More Examples (1)

Example1: A — A

® Solution: ?

Example22. A - B — A

® Solution: ? (hint: constant)

Example3: (A — B) - (B—C) —» (A= C)

® Solution: ? (hint: composition)

Example 4 Empty — A

® Solution: ? (hint: absurd)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 61/118

Type Inhabitation: More Examples (2)

Example1: A — A
® Solution: fun x = x (identity)

Example22. A - B — A

® Solution: fun x y = X (const)

Example3: (A — B) - (B— C) — (A — C)
e Solution: fun f g x = g (f x) (composition)

Example 4 Empty — A
® Solution: fun x = match x with . (absurd)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 62/118

For Culture: Uninhabited Types

Some types have no inhabitants!

Examples:
® Empty: no constructors (since nothing can construct it)
® A — Empty where A isinhabited: there is no way to produce Empty
¢ (A — B) — Ainintuitionistic logic (Peirce’s law)

In logic: Corresponds to unprovable propositions
® Empty = False statement or logical contradiction
® Empty — A:“l can produce a value of any type A as long as you give me a value of
Empty” (impossible!)
® Uninhabited type = Unprovable proposition

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 63/118

Section 6

Type Definitions

Inductive Types: The Foundation

Inductive type: A type consisting of all values built using its constructors, and nothing else

General format:

inductive TypeName (params : Types) : Type where
| constructorl : constructorl_type
| constructor2 : constructor2_type

| constructorN : constructorN_type

Key properties:
® Nojunk: Only values from constructors exist
® No confusion: Different constructors # different values

® Finite: No infinite chains of constructors

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 65/118

Natural Numbers: Peano Arithmetic (in Lean)
Lean's most fundamental inductive type:

namespace MyNat

inductive Nat : Type where

| zero : Nat -- Base case: 0
| succ : Nat > Nat -- Recursive: successor
-- How numbers are represented:
-- 0 = Nat.zero
-- 1 = Nat.succ Nat.zero
-- 2 = Nat.succ (Nat.succ Nat.zero)
-- 3 = Nat.succ (Nat.succ (Nat.succ Nat.zero))

#check Nat

#check Nat.zero

#check Nat.succ

#check Nat.succ (Nat.succ Nat.zero) -- This is 2!

end MyNat

Why unary? Makes induction and recursion natural!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 66/118

Peano Axioms

For Culture: Peano’s axioms for natural numbers:

1.

0 is a natural number

2. Every natural number has a successor
3. Ois not the successor of any number

4.
5

. Induction principle holds

Different numbers have different successors (injective)

How do we do this in Lean?

® Nat.zero gives usaxiom (1)

® Nat.succ gives usaxiom (2)

® "No confusion” gives us axioms (3) and (4)

® Ppattern matching gives us axiom (5)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

67/118

Arithmetic Expressions: Abstract Syntax Trees (in Lean)

Inductive types naturally represent syntax trees!
This is extremely useful for compiler/interpreter design

inductive AExp : Type where

-- Example: (x + 3) * (y

def example_expr : AEXp :=
AExp.mul

(AExp.add (AExp.var

(AExp.sub (AExp.var

num :

var :
: AExp > AExp > AExp
: AExp > AExp > AExp
: AExp > AExp > AExp
: AExp > AExp > AExp

add
sub
mul
div

7 > AExp
String > AExp

#check example_expr -- AEXp

PROOF101 Week 2 Dependent Type Theory

_2)

Literal number
Variable name
el + e2
el - e2
el * e2
el / e2

”x") (AExp.num 3))
"y") (AExp.num 2))

Daniel Dia & Guest Lecturers (AUB)

68/118

Lists: Polymorphic Recursive Types

Definition: A "polymorphic recursive type” is a type that can take other types as parameters
(like generics), allowing functions or data structures to operate on different types in a flexible

manner. It is the workhorse of functional programming:

-- Conceptual definition (List is built-in)
inductive MyList (a : Type) where
| nil : MyList a -- Empty list

| cons : a > MyList a > MyList a -- Head :: Tail

-- Notation: [1, 2, 3] desugars to:
-- List.cons 1 (List.cons 2 (List.cons 3 List.nil))

#check List N -- Type
#check List.nil -- List a
#check List.cons 1 List.nil -- List N (the list [1])

-- Polymorphism: Works for ANY type a!
#check ([1, 2, 3] : List Nat)

#check ([”a”, "b”] : List String)
#check ([[1], [2, 3]1] : List (List Nat))

PROOF101 Week 2 Dependent Type Theory

Daniel Dia & Guest Lecturers (AUB)

69/118

Binary Trees

Recall: A binary tree is a hierarchical data structure in which each node has at most two
children, referred to as the “left child” and the “right child”.

inductive BTree (a : Type) : Type where
| empty : BTree a
| node : BTree a » a » BTree a > BTree a

-- Example tree:

== 1
def exampleTree : BTree Nat := -- Explicitly write out the binary tree using its constructors
BTree.node
(BTree.node (BTree.node BTree.empty 1 BTree.empty) 3 BTree.empty)
5

(BTree.node BTree.empty 7 BTree.empty)

Uses: Search trees, sorting, expression trees, game trees, ...

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 70/118

Result Type (Either)

Result: Represents success or failure

Cool consequence: we can encode program state using the type system itself!

inductive Result (a : Type) : Type where
| success : a > Result a
| failure : String » Result a

-- Example: Safe division

def safeDiv (n : Nat) (d : Nat) : Result Nat :=

if d = 0 then

Result.failure "Division by zero”
else

Result.success (n / d)

#eval safeDiv 10 2 -- success 5

#teval safeDiv 10 0 -- failure "Division by zero”

Benefit: Explicit error handling in types!

PROOF101 Week 2 Dependent Type Theory

Daniel Dia & Guest Lecturers (AUB)

n/ms

Section7

Function Definitions

Pattern Matching: Defining Functions

Fact: we can define functions by pattern matching on constructors:

-- Fibonacci numbers
def fib : N > N

| o =0
| 1 =1
| n+2 = fib (n + 1) + fib n

#eval fib 10 -- Result: 55
-- Addition (recursive on second argument)
def add : N> N> N

| m, Nat.zero = m

| m, Nat.succ n = Nat.succ (add m n)

#eval add 3 4 -- Result: 7

Lean verifies: Patterns are exhaustive and terminating!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

73/118

Pattern Matching: The n+k Pattern

Special pattern: n + k matches numbers > k

Example:n + 2
® Matches: 2, 3,4, 5, ...
® Binds:n =0,1,2,3, ...

® Does not match: 0,1

Usage in Fibonacci:
e fib 0 = 0
e fib 1 = 1
e fib (n + 2) = fib (n + 1) + fib n

This is more elegant than explicit succ patterns!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 74/118

Pattern Matching: Multiple Arguments

You can also very easily perform pattern matching on multiple arguments!

-- Pattern match multiple arguments
def min : N> N> N

| o, _ =0

| _, 0 =0

| n+1, m+1 = (min nm) + 1
#eval min 3 5 -- Result: 3
#eval min 5 3 -- Result: 3

-- isEven using n+2 pattern
def isEven : N 2 Bool

| o = true

| 1 = false

| n+2 = isEven n

#eval isEven 0 -- Result: true
#eval isEven 1 -- Result: false
#eval isEven 10 -- Result: true
#eval isEven 15 -- Result: false
PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

75/118

Structural Recursion

Structural recursion: Recursion that "peels off” constructors

-- Length of a list (structurally recursive)
def length {a : Type} : List a > Nat

I 1] =0
| x :: xs = 1 + length xs -- Perform recursion on xs (smaller!)
#teval length [1, 2, 3, 4] -- Result: 4

-- Append two lists
def append {a : Type} : List a » List a » List a

| 1, ys = ys
| x :: xs, ys = x :: append xs ys -- Perform recursion on xs
#eval append [1, 2] [3, 4, 5] -- Result: [1, 2, 3, 4, 5]

Pedantic note: It is a generalization of mathematical induction to arbitrary inductive types. To prove a goal
n : Nk P[n] by structural induction on n, it suffices to show two subgoals:

F P[0] (base case)
k:N,ih : Plk] = P[k+ 1] (induction step)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 76/118

More List Functions

Consider some very important list functions: reverse,
map (apply function to each element), and filter (keep elements satisfying predicate).

-- Reverse a list

def reverse {a : Type} : List a > List a
| [1] = []
| x :x xs = reverse xs + [x]

#eval reverse [1, 2, 3] -- Result: [3, 2, 1]
-- Map: Apply function to each element
def listMap {a B : Type} (f : o > B) : List a » List B
| 1] = []
| x :z xs = f x :: listMap f xs
#teval listMap (- % 2) [1, 2, 3] -- Result: [2, 4, 6]
-- Filter: Keep elements satisfying predicate
def listFilter {a : Type} (p : a > Bool) : List o > List

| [1] =[]
| x :: xs = if p x then x :: listFilter p xs else listFilter p xs

Note: These functions are vital in functional programming and you will use them all the time!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

77/m8

Fold: The Universal List Function

Fold: Process a list to produce a single value
Intuition: It literally "folds” the list into a value (right to left or left to right)

-- Left fold
def foldl {a B : Type} (f : B > a » B) (init : B) : List a > B
| [1] = init

| x :: xs = foldl f (f init x) xs

-~ Right fold

def foldr {a B : Type} (f : a > B » B) (init : B) : List a > B
| [1 = init
| x :: xs = f x (foldr f init xs)
-- Examples
#eval foldl (- + -) @ [1, 2, 3, 4] -- Result: 10 (sum)
#teval foldr (- :: -) [] [1, 2, 3] -- Result: [1, 2, 3] (identity)
#eval foldl (funm acc x = x :: acc) [] [1, 2, 3] -- Result: [3, 2, 1] (reverse)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 78/118

Fold Left vs Fold Right

Key difference: Order of operations

foldl (left fold): (((z 0 xy) 0 xy) 0 x3)
® Tail recursive (efficient)
® Associates to the left
e Example: foldl (-) 10 [1,2,3]1=((10—1)—2)—3=14

foldr (right fold): (21 o (x4 0 (x50 2)))
® Not tail recursive
® Associates to the right
e Example: foldr (-) 10 [1,2,3]=1—(2—(3—10)) = -8

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 79/18

Named Arguments

The colon (:) acts as a boundary (def mul ... : N — N): arguments placed to its left are fixed
parameters available throughout the function, while those to its right are the inputs being
analyzed via pattern matching.

-- Parameter m doesn't need pattern matching
def mul (m : N) : N> N
| Nat.zero = Nat.zero
| Nat.succ n = add m (mul m n) -- m is in scope!

#eval mul 3 4 -- Result: 12
-- Generic iterator (higher-order function)
def iter (a : Type) (z : a) (f : a > a) : N> «a
| Nat.zero = z
| Nat.succ n = f (iter a z f n)
-- Exponentiation using iter
def power (mn : N) : N :=
iter N 1 (mul m) n

#eval power 2 10 -- Result: 1024

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

80/118

Implicit Type Parameters

-- Type parameters can be implicit!

def reverse {a : Type} : List a > List a
| [1] =[]
| x :: xs = reverse xs + [x]

-- Lean infers a automatically
#eval reverse [1, 2, 3] --a

#eval reverse ["a”, "b", "c"] -- «a

Nat (inferred!)
String (inferred!)

-- Can make explicit with @
#eval Q@reverse Nat [1, 2, 3]

Syntax:
e {a : Type} - Implicit (inferred)

e (a : Type) - Explicit (must provide)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 81/118

Evaluating Expressions

First, define a way to look up the values of strings. In Lean, a common way to represent this is
asafunctionString — Z.

def Env := String » Z -- An environment maps variable names to their integer values
def my_env : Env := fun name = -- Example environment where x = 10 and y = 5

if name = ”x” then 10

else if name = "y” then 5

else 0 -- Default value for unknown variables

You can use pattern matching on the inductive type. This is the functional way to "extract” the
data from the constructors!

def eval (env : Env) : AExp »> Z

| AExp.num i =i -- Literal
AEXp.var x = env X -- Lookup variable
AExp.add e, e, = eval env e, + eval env e,

AExp.sub e, e, = eval env e, - eval env e,

AExp.mul e, e, = eval env e, * eval env e,

AExp.div e, e, = / eval env e,

eval env e,

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 82/118

Evaluator Example

-- Example environment

def myEnv : String > z
oo 5

oo 3

| _ =0

-- (x + 3) *x (y - 2) where x=5, y=3
def myExpr : AExp :=
AExp.mul
(AExp.add (AExp.var "x") (AExp.num 3))
(AExp.sub (AExp.var "y") (AExp.num 2))

1
®

#teval eval myEnv myExpr -- Result: (5+3)%(3-2)

Key point: Pattern matching + recursion = an actual (simple) interpreter!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 83/118

Termination Checking

Lean only accepts functions proven to terminate!

Why? Non-terminating functions can prove False:
® |floop : N » Nwhereloop n = loop n + 1
® Thenloop @ = loop 0 + 1
® Subtract bothsides: 0 = 1

® From contradiction, anything follows! (Logical inconsistency)

What Lean accepts:
® Structural recursion: Recursive calls on structurally smaller arguments
® Well-founded recursion: Recursive calls on "smaller” arguments (custom ordering)

® Mutual recursion (multiple functions calling each other)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 84/118

Why Do We Care About Termination?
Example of inconsistency:

Suppose we allowed:
e def loop (n : Nat) : Nat := loop n + 1

Then:

loop 0 = loop 0 + 1
loop 0 = (loop 0+ 1) + 1
loop 0 = loop 0 + 2

0 =nforanyn

Disaster: We can prove anything! The logic is broken.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 85/118

What Lean Rejects

Consider a couple of examples of functions Lean will reject.

-- (wrong) Not structurally smaller
def bad (n : N) : N := bad n + 1

-- (wrong) Growing, not shrinking
def worse (n : N) : N := worse (n + 1)

-- (wrong) Not obviously decreasing
def tricky (n : N) : N :=

if n = 0 then 0 else tricky (n - 1 + 1)
-- (correct) Structurally decreasing

def good (n : N) : N :=
if n = 0 then 0 else good (n - 1)

Lean’s termination checker: Very smart, but not perfect!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 86/118

Section 8

Theorem Statements

Theorems: Propositions as Types

Theorem: Like def, but result is a proposition

-- Commutativity of addition
theorem add_comm (m n : N) :
add m n = add n m :=
sorry -- Proof to be filled

-- Associativity of addition

theorem add_assoc (1 mn : N) :
add (add 1 m) n = add 1 (add m n) :=
sorry

-- Multiplication commutes
theorem mul_comm (m n : N) :

mul mn =mul nm :=
sorry

sorry is a placeholder that assumes the proposition (unsafe!).

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

88/118

More Theorems

-- Reverse is involutive

theorem reverse_reverse {a : Type} (xs : List a) :
reverse (reverse xs) = Xs :i=
sorry

-- Append is associative

theorem append_assoc {a : Type} (xs ys zs : List a) :
append (append xs ys) zs = append xs (append ys zs) :=
sorry

-- Length of append
theorem length_append {a : Type} (xs ys : List a) :

length (append xs ys) = add (length xs) (length ys) :=
sorry

Later: We'll learn to write actual proofs!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 89/118

Theorems vs Definitions

What's the difference?

Definition (def):
® Defines a computational function
® Can be evaluated
® Example: def add : Nat - Nat - Nat

Theorem (theorem):
® States a property (proposition)

® Provides a proof

® Example: theorem add_comm : add m n = add n m

Key point: Both are functions in Lean’s type theory!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

90/118

Axioms and Opaque Definitions

Axioms: Theorems without proofs (dangerous!)

opaque a : Z
opaque b : Z

axiom a_less_b : a < b -- Assumed without proof
-- Can use in other proofs
theorem a_not_equal_b : a # b := by

intro h

have : a < a := h [l a_less_b
omega -- Contradiction!

Warning: Axioms can introduce inconsistencies!
® axiom false_axiom : False breaks everything

® Use axiomonly when absolutely necessary

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 91/18

Standard Axioms in Lean

Lean includes some standard axioms:

1. Propositional extensionality:
® Two propositions are equal if they're logically equivalent

c(PoQ) > (P=0Q)

2. Quotient types:
® Construct types from equivalence relations

® Needed for mathematical structures

3. Classical logic:
® |aw of excluded middle: P v =P
® Choice: (V x, 3y, Pxy)>3f, Vx, Px(fx)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 92/118

Section 9

Dependent Types

What are Dependent Types?

Simple types: Types don't depend on values
® |ist Nat:type doesn't know list length
® Nat - Nat: function type doesn't specify behavior
® Array Int:arraysize notintype

Dependent types: Types CAN depend on values!
® Vector Nat 3:vector of exactly 3 natural numbers
e (n : Nat) > Vector Nat n:returnsvector of lengthn
e {i : Nat // 1 < 10}: natural numbers less than 10

Why powerful? Encode properties in types!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 94/118

Dependent Types Example: Vectors

Problem: Lists don't track length in type

-- Regular list (length unknown)
def badHead (xs : List Nat) : Nat :=
xs.head! -- Crashes if empty

-- Dependent type solution: Vector (list with length)
inductive Vector (a : Type) : Nat > Type where

| nil : Vector a 0 -- Empty vector
| cons : a > {n : Nat} > Vector a n > Vector o (n + 1)

-- Now head is SAFE - type guarantees non-empty!

def head {a : Type} {n : Nat} (v : Vector a (n + 1)) :

match v with
| Vector.cons x _ = x -- No such crashes possible

Key: Type Vector o n dependson valuen

PROOF101 Week 2 Dependent Type Theory

a =

: Nat!

Daniel Dia & Guest Lecturers (AUB)

95/118

Vector Operations

Operations that preserve length:

Append:
® Type:Vector a n > Vector a m » Vector a (n + m)
® Result length is the sum of inputs!

Map:
e Type: (a » B) » Vector a n > Vector B n
® Preserves the length exactly!

Zip:
® Type:Vector a n » Vector B n » Vector (a x B) n
® Requires the same length (enforced by types!)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 96/118

Dependent Types Example: Bounded Numbers

Fin n: Natural numbers less than n

-- Fin n = {i : Nat // i < n}

#check Fin 10 -- Type (numbers 0-9)
#tcheck (5 : Fin 10) -- Vvalid: 5 < 10
#check (15 : Fin 10) -- (wrong) Type error: 15 not < 10

-- Safe array indexing
def safeGet {a : Type} {n : Nat} (arr : Array a)
(h : arr.size = n) (i : Fin n) : =
arr[i] -- No bounds check needed -> type guarantees!

-- Example usage
def myArray : Array Nat := #[10, 20, 30, 40, 50]

#eval safeGet myArray rfl (2 : Fin 5) -- Result: 30 (safe!)

Benefit: Eliminates array bounds exceptions at compile time!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 97/118

Subtype: Refined Types

Subtype: Type with a predicate

Syntax: {x : a // P x}
Read: "Values of type a such that P(x) holds”

Examples:
e {n : Nat // n < 10}: natural numbers less than 10
e {xs : List Nat // xs.Sorted}: sorted lists
e {x : Int // x # 0}: non-zerointegers

Construction: Provide value + proof
e (5, proof_that_5_1t_10) : {n : Nat // n < 10}

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 98/118

Dependent Function Types (Pi Types)
Pi types (II-types): Functions where output type depends on input value

-- Type depends on the value n
def pick (n : N) : {i : N // i <n} =

(n, Nat.le_refl n) -- Return n with proof n < n
#check pick —(n :N)>{i:N/ iz<n}
#teval (pick 5).val -- Result: 5

-- Polymorphic identity has dependent type

def id {a : Type} (x : a) : a := x

#icheck @id -- {a : Type} » a > «a

-- Read: "For any type a, given x : a, return something of type a”

Key: The output type depends on the input!

To be clear: They generalize standard functions by allowing the result type to be a 'dynamic’
calculation based on the specific input value, e.g. a function that returns a proof specifically
tailored to the number provided as an argument.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

99/18

More Pi Type Examples

Consider the replicate function that creates a list of n copies of x implemented via
IT-types.

-- Replicate: Creates a list of n copies of x
def replicate {a : Type} (n : Nat) (x : a) : List a :=
match n with

| o= []
| n+1 = x :: replicate n x
#teval replicate 5 "hi” -- Result: [”hi”, "hi”, "hi”, "hi”, "hi"]

-- The type of replicate: {a : Type} > (n : Nat) » a > List a
-- The list type doesn't depend on n, but it could...

-- For instance, it could return a vector:
-- {a : Type} » (n : Nat) » a > Vector a n

While the replicate function shown here returns a standard List, II-types allow us to be
even more precise by returning a 'Vector’ Hn:N Vec(R, n), a data type that encodes its own
length directly into its type signature for compile-time safety.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 100/118

Dependent Types in Practice

Real-world use cases:

1. Proven-correct sorting:

-- Return value is proven to be sorted!

def sort (xs : List Nat) :
{ys : List Nat // ys.Sorted a ys.length = xs.length} :=
sorry -- (implementation with proof here)

2. Matrix multiplication with dimension checking:

def matmul {m n p : Nat}
(A : Matrix m n) (B : Matrix n p) : Matrix m p :=
sorry -- (the type ensures the dimensions match)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 101/18

Protocol State Machines

3. Protocol state machines:

inductive ConnectionState where
| disconnected : ConnectionState
| connected : ConnectionState

-- Connection type DEPENDS on state
def Connection : ConnectionState » Type :=
fun state = match state with
| .disconnected = Unit
| .connected = { handle : Nat }

-- Can only send after it connected, this is directly enforced by the type!
def send (conn : Connection .connected) (msg : String) : IO Unit :=
sorry

Benefit: Protocol violations become type errors!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB)

102/118

Dependent Types: Term Depending on...

Term depending on a term: Type depending on a type:
fun x : Nat = x + 1 List : Type — Type
® Regular function: ® Type constructor: takes type a,
input (term) - output (term) returns type List «
® This is just ordinary simple type theory ® Thisis a type-level function

Term depending on a type:

fun {a : Type}l (x : a) = x
These are the building blocks of the Lambda

® Polymorphic function: takes type o, Cube

thentermz : «
® This is parametric polymorphism

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 103/118

Dependent Types: Type Depending on Term

The key case — Type depending on a term:

Vector « Nat — Type
® Takesavaluen : Nat (aterm!)
® ReturnsatypeVectoran

® Different values give different types!

This is what "dependent type” strictly means:

® Atype family indexed by values
® The type depends on runtime data

® This would not have been possible in
simple type theory

PROOF101 Week 2 Dependent Type Theory

More examples:
® Fin Nat — Type
— numbers less than n
e Matrix m n Nat — Nat —
Type —m X n matrices

® Array a n
—arrays of size n

Nat — Type

This property allows Lean to verify array bounds
at compile-time.

Daniel Dia & Guest Lecturers (AUB) 104/118

Barendregt's A-cube (1)
In the Calculus of Constructions (Lean’s foundation):
Body (t) Argument (x) Description

Term dependingon Term Simply typed function
fun x ¢ Nat = x + 1

Type dependingon Term Dependent type
Vector a : Nat > Type

Term dependingon Type Polymorphic term
fun {a} (x : a) = x

Type dependingon Type Type constructor
List : Type > Type

Lean supports all four corners of the A\-cube!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 105/118

Barendregt's \-cube (2)

Type systems hierarchy ("+" = "adds the ability to form..” / "introduces dependency.."):

Simply typed A-calculus: Term - Term

System F (polymorphism): + Term - Type

System I, (type operators): + Type > Type

AP (dependent types): + Type > Term

Calculus of Constructions: All four!

Each corner adds "expressiveness”:
® Polymorphism — Generic functions
® Type operators — Generic type constructors

® Dependent types — Types that depend on values

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 106/118

Section 10

The Lean Architecture

Review: From Source Code to the Verified Kernel

Lean’s architecture (Review): 2. Elaborator (untrusted):

Trusted kernel with an untrusted elaborator e Fillsin implicit arguments
. ® Resolves type class instances
1. Source code (what you write):

) ® Expands macros and notation
® High-level, readable syntax

] o ® Compiles tactics to proof terms
® Type inference, implicit arguments

® Tactics, notation, macros 3. Kernel (trusted):

® Small, verified core (~10k lines)
® Type checks all terms
® Ensures logical soundness

® De Bruijn indices, no names

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 108/118

For Culture: The De Bruijn Criterion

De Bruijn criterion: Trust only a small, verified kernel

Named after: Nicolaas Govert de Bruijn (1918-2012)
® Dutch mathematician
® (Created Automath (first proof assistant)

® Emphasized minimal trusted base

The principle:
® Keep the trusted core as small as possible
® All proof terms flow through the kernel

® Bugs in elaborator don't compromise soundness

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 109/118

Key: Why This Separation Matters

Benefits:
® Elaborator can be complex without risking soundness
® Bugs in tactics don’t compromise proofs
® Easy to add new features (tactics, notation)

® Kernelis small enough to verify by hand

Example: The simp tactic
® Elaborator: Complex rewrite engine (thousands of lines)

® Qutput: Simple chain of rewrite proof terms

Kernel: Verifies each rewrite is valid

If simp has a bug, kernel rejects the proof!

Motto: "Don't trust, verify” - Even if elaborator is buggy, kernel catches it!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 110/18

For Culture: De Bruijn Indices

Problem with variable names: Capture, shadowing, alpha-equivalence

Solution: Use numbers instead of names!

De Bruijn index: Number of binders between variable and its binder

Examples:
® \z.x becomes \. O (refers to nearest binder)
® \z. \y.x becomes A. \. 1 (skip one binder)
® \z. \y.ybecomes \. \. 0 (nearest binder)

Benefit: No alpha-conversion needed! Names don’t matter.

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 11/18

The Elaboration Pipeline

From source to kernel:

1. Parsing:
® Source code > Abstract syntax tree
® Handle notation, macros, syntax sugar
2. Elaboration:
® Fillin implicit arguments
® Resolve type class instances
® Compile tactics to proof terms
® |nsert coercions
3. Kernel checking:
® Type check elaborated term
® Verify termination
® Ensure soundness

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 12/118

Section 11

Summary

Week 2 Summary

® Lambda Calculus provides the computational foundation
® Functions are first-class
® Beta reduction for computation
® Church encodings show universality

® Simply Typed Lambda Calculus adds safety

® Type system prevents errors
® Curry-Howard: Types = Propositions

® Dependent Types let types talk about values

® Encode properties in types
® Eliminate runtime checks
® Express precise specifications

® Lean’s Architecture: Trusted kernel + Flexible elaborator
® Small trusted core (De Bruijn criterion)
® Complex features without compromising soundness

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 114/118

Section 12

Assignments & Next Steps

This Week’s Assignments

Readings (see the course website)

® Theorem Proving in Lean 4 — Chapters 2-3
® The Hitchhiker's Guide to Logical Verification — Chapters 1-2

® Functional Programming in Lean 4 — Chapter 1

PROOF101 Quiz 2 (due next time)

® Programming Assignment 2: Lambda Calculus & Type Theory (due next time)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 116/118

Questions & Discussion

PROOF101 Week 2 Dependent Type Theory

Questions?

Join our community:
Discord: Link on website
WhatsApp: Link on website
Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mailaub.edu

Daniel Dia & Guest Lecturers (AUB) 1n7/18

PROOF101: Formal Verification &

Proof Assistants
Google Developer Groups @ AUB

“In mathematics, you don’t 2 AUB Math Society
understand things. You just get used Spring 2026
to them.”
— John von Neumann Week p) Of 10
Dependent Type Theory

B Daniel Dia & Guest Lecturers

@ https:

MATHEMATICS

SOCIETY //danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

	Lambda Calculus: The Foundation
	Types
	Terms
	Type Checking and Type Inference
	Type Inhabitation
	Type Definitions
	Function Definitions
	Theorem Statements
	Dependent Types
	The Lean Architecture
	Summary
	Assignments & Next Steps

