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Section 1

Lambda Calculus: The Foundation



Why Lambda Calculus?

The Problem: Programming languages are complex with lots of syntax.

The Solution: Lambda calculus is a theory of functions with only:

• 3 pieces of syntax

• 1 rule of computation

• Ability to express anything computable

Lambda calculus gives us a mathematical foundation to reason about computation itself (and
LARGELY predates modern programming languages).

Key point: Just like arithmetic has addition and multiplication as primitive operations, lambda
calculus has function application as its only primitive operation.
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Functions as Mappings

For our intents, a function is simply a mapping of inputs (domain) to outputs (codomain).

Example: 𝑓(𝑥) = 𝑥2 maps:

• 2 ↦ 4
• 3 ↦ 9
• 𝑥 ↦ 𝑥2 (for arbitrary 𝑥)

Instead of writing 𝑓(𝑥) = 𝑥2 (like in math), in the Lambda Calculus, we would write: 𝜆𝑥. 𝑥2

Read as: ”lambda 𝑥maps to 𝑥2”

Note: Nothing special about ”𝜆” - could be ”ballout”, ”jazar”, or ”douleb”. The symbol is arbitrary!
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Lambda Abstraction Syntax

Lambda abstraction: 𝜆𝑥.𝑀
• 𝜆 indicates we’re defining a function
• 𝑥 is the input variable (parameter)
• . separates parameter from body

• 𝑀 is the output expression (body)

Examples:

• 𝜆𝑥. 𝑥 + 1 (successor function)
• 𝜆𝑦. 𝑦 × 𝑦 (square function)
• 𝜆𝑛. 𝜆𝑚. 𝑛 +𝑚 (addition, so two parameters!)

• 𝜆𝑓. 𝜆𝑥. 𝑓(𝑓(𝑥)) (apply function twice)

In Lean: fun x =>= x + 1 or λ x =>= x + 1
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Beta Reduction: Function Application

Beta reduction (𝛽-reduction): Applying a function to an argument

Rule: (𝜆𝑥.𝑀)𝑁 →𝛽 𝑀[𝑁/𝑥]
Meaning:

• (𝜆𝑥.𝑀) is the function definition
• 𝑁 is the argument being supplied

• 𝑀[𝑁/𝑥]means: ”in𝑀, replace every 𝑥 with𝑁”

Simple example:

• (𝜆𝑦. 𝑦 × 𝑦) 5 →𝛽 5 × 5 = 25
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Beta Reduction: Complex Example

Let’s evaluate: (𝜆𝑓. 𝜆𝑥. 𝑓(𝑓(𝑥))) (𝜆𝑦. 𝑦 + 1) 2

Step-by-step reduction:

(𝜆𝑓. 𝜆𝑥. 𝑓(𝑓(𝑥))) (𝜆𝑦. 𝑦 + 1) 2
= (𝜆𝑥. (𝜆𝑦. 𝑦 + 1)((𝜆𝑦. 𝑦 + 1)(𝑥))) 2 (Apply first arg)

= (𝜆𝑦. 𝑦 + 1)((𝜆𝑦. 𝑦 + 1)(2)) (Apply second arg)

= (𝜆𝑦. 𝑦 + 1)(2 + 1) (Inner reduction)

= (𝜆𝑦. 𝑦 + 1)(3) (Arithmetic)

= 3 + 1 (Final reduction)

= 4 (Result)

Pro tip: Work from outside in (”leftmost-outermost” strategy)
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More Beta Reduction Examples

Example 1: Identity function
(𝜆𝑥. 𝑥) 5 →𝛽 5

Example 2: Constant function

(𝜆𝑥. 𝜆𝑦. 𝑥) 5 3 →𝛽 (𝜆𝑦. 5) 3 →𝛽 5

Example 3: Function composition

(𝜆𝑓. 𝜆𝑔. 𝜆𝑥. 𝑓(𝑔(𝑥))) (𝜆𝑦. 𝑦 × 2) (𝜆𝑧. 𝑧 + 1) 3
= (𝜆𝑦. 𝑦 × 2)((𝜆𝑧. 𝑧 + 1)(3))
= (𝜆𝑦. 𝑦 × 2)(4)
= 4 × 2 = 8
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Alpha Conversion: Renaming Variables

Alpha equivalence (𝛼-equivalence): Functions are equivalent if they differ only in variable
names

Examples (all equivalent):

• 𝜆𝑥. 𝑥2

• 𝜆𝑦. 𝑦2

• 𝜆𝑧. 𝑧2

• 𝜆banana. banana2

The choice of variable name doesn’t change what the function does!
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Alpha Conversion: Why It Matters

Variable capture problem: Must rename to avoid conflicts

Bad substitution:
(𝜆𝑥. 𝜆𝑦. 𝑥) 𝑦 →𝛽 𝜆𝑦. 𝑦 (wrong)

Correct substitution (with 𝛼-conversion):

(𝜆𝑥. 𝜆𝑦. 𝑥) 𝑦 →𝛼 (𝜆𝑥. 𝜆𝑦′. 𝑥) 𝑦
→𝛽 𝜆𝑦′. 𝑦 (correct)

Rule: Rename bound variables before substitution to avoid capture
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Lambda Calculus in Lean

Lean uses lambda calculus as its foundation!

-- Lambda abstraction (two syntaxes)

#check fun x : Nat =>= x + 1

#check λ x : Nat =>= x * x

-- Function application

#eval (fun x =>= x + 1) 5 -- 6

-- Higher-order functions

def twice (f : Nat → Nat) (x : Nat) : Nat ::=

f (f x)

#eval twice (fun x =>= x + 1) 5 -- Result: 7

#eval twice (fun x =>= x * 2) 3 -- Result: 12
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Currying in Lean

Currying: Multiple parameters via nested functions

-- Explicit currying

def add : Nat → Nat → Nat ::=

fun m =>= fun n =>= m + n

#eval add 3 4 -- Result: 7

#eval (add 3) 4 -- Result: 7 (same thing!)

-- Syntactic sugar (same as above)

def add' (m : Nat) (n : Nat) : Nat ::= m + n

-- Partial application

def add5 ::= add 5

#eval add5 10 -- Result: 15

Key benefit: Partial application lets us create specialized functions!
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Higher-Order Functions

TL;DR: Functions can:

• Take functions as inputs

• Return functions as outputs

Example: 𝜆𝑓. 𝜆𝑥. 𝑓(𝑓(𝑥))
This expression takes a function 𝑓 and returns a new function that applies 𝑓 twice.

Practical examples:

• map: Apply function to every list element

• filter: Keep elements satisfying a predicate

• compose: Chain two functions together
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Higher-Order Functions in Lean

Here are some ways to write higher-order functions in Lean for you to contemplate:

-- Function that applies f n times

def applyN (f : Nat → Nat) : Nat → Nat → Nat

| 0, x =>= x

| n+1, x =>= f (applyN f n x)

#eval applyN (· + 1) 5 0 -- Result: 5

-- Function composition

def compose (f : Nat → Nat) (g : Nat → Nat) : Nat → Nat ::=

fun x =>= f (g x)

def double ::= (· * 2)

def increment ::= (· + 1)

def doubleAndIncrement ::= compose increment double

#eval doubleAndIncrement 5 -- Result: 11 (5*2 + 1)
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Currying: Multiple Arguments

Lambda abstractions only take one argument. How do we handle multiple inputs?

Currying: Return a function that takes the next argument

Example: Addition

add = 𝜆𝑥. 𝜆𝑦. 𝑥 + 𝑦
add 1 →𝛽 𝜆𝑦. 1 + 𝑦

(add 1) 2 →𝛽 1 + 2 = 3

Named after logician Haskell Curry.

Key benefit: Partial application! add 1 is a valid function.
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Encoding Booleans

We can encode data types as functions! (Church encodings)

Church Booleans:

• true = 𝜆𝑥. 𝜆𝑦. 𝑥 (returns first argument)
• false = 𝜆𝑥. 𝜆𝑦. 𝑦 (returns second argument)

If-then-else:
if = 𝜆𝑏. 𝜆𝑥. 𝜆𝑦. 𝑏 𝑥 𝑦

If 𝑏 is true, returns 𝑥; if false, returns 𝑦!
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Church Booleans: How TheyWork

Recall:
• true = 𝜆𝑥. 𝜆𝑦. 𝑥
• false = 𝜆𝑥. 𝜆𝑦. 𝑦

Example evaluation:

true 𝑎 𝑏 = (𝜆𝑥. 𝜆𝑦. 𝑥) 𝑎 𝑏
→𝛽 (𝜆𝑦. 𝑎) 𝑏
→𝛽 𝑎

false 𝑎 𝑏 = (𝜆𝑥. 𝜆𝑦. 𝑦) 𝑎 𝑏
→𝛽 (𝜆𝑦. 𝑦) 𝑏
→𝛽 𝑏

Insight: Booleans are choice functions!
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Boolean Operations

Boolean operations using Church encoding:

NOT:
not = 𝜆𝑝. 𝑝 false true

AND:
and = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑞 𝑝

If 𝑝 is true, return 𝑞; if 𝑝 is false, return 𝑝 (false)

OR:
or = 𝜆𝑝. 𝜆𝑞. 𝑝 𝑝 𝑞

If 𝑝 is true, return 𝑝 (true); if 𝑝 is false, return 𝑞
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Boolean Operations: Example

Let’s evaluate: and true false

and true false
= (𝜆𝑝. 𝜆𝑞. 𝑝 𝑞 𝑝) true false
= (𝜆𝑞. true 𝑞 true) false
= true false true
= (𝜆𝑥. 𝜆𝑦. 𝑥) false true
= (𝜆𝑦. false) true
= false

Result: false (as expected!)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 19/118



Encoding Numbers (Church Numerals)

We can even encode natural numbers as functions!

Church Numerals: A number 𝑛 is a function that applies 𝑓 exactly 𝑛 times
• 0 = 𝜆𝑓. 𝜆𝑥. 𝑥 (apply 𝑓 zero times)
• 1 = 𝜆𝑓. 𝜆𝑥. 𝑓 𝑥 (apply 𝑓 once)
• 2 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥) (apply 𝑓 twice)
• 3 = 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 (𝑓 𝑥)) (apply 𝑓 three times)

Insight: A number is an iterator!
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Church Numerals: Successor

Successor function: Add one to a Church numeral

succ = 𝜆𝑛. 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥)

How it works:
• Take a number 𝑛 (which applies 𝑓 𝑛 times)
• Apply 𝑓 to the result of 𝑛 𝑓 𝑥
• This gives us 𝑛 + 1 applications of 𝑓

Example: succ 2
succ 2 = (𝜆𝑛. 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑛 𝑓 𝑥)) (𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 𝑥))

→𝛽 𝜆𝑓. 𝜆𝑥. 𝑓 ((𝜆𝑓 ′. 𝜆𝑥′. 𝑓 ′ (𝑓 ′ 𝑥′)) 𝑓 𝑥)
→𝛽 𝜆𝑓. 𝜆𝑥. 𝑓 (𝑓 (𝑓 𝑥)) = 3
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Church Numerals: Addition

Addition: Add two Church numerals

add = 𝜆𝑚. 𝜆𝑛. 𝜆𝑓. 𝜆𝑥.𝑚 𝑓 (𝑛 𝑓 𝑥)

How it works:

• Apply 𝑓 𝑛 times to 𝑥 (giving us 𝑛)
• Then apply 𝑓𝑚more times

• Total:𝑚+ 𝑛 applications of 𝑓

Example: add 2 3 = 5
• 2 𝑓 (3 𝑓 𝑥) = 𝑓 (𝑓 (𝑓 (𝑓 (𝑓 𝑥)))) = 5
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Church Numerals: Multiplication

Multiplication: Multiply two Church numerals

mult = 𝜆𝑚. 𝜆𝑛. 𝜆𝑓.𝑚 (𝑛 𝑓)

How it works:

• 𝑛 𝑓 creates a function that applies 𝑓 𝑛 times
• 𝑚 (𝑛 𝑓) applies this function𝑚 times

• Total:𝑚× 𝑛 applications of 𝑓

Example: mult 2 3
• Apply ”𝑓 three times” twice
• = 𝑓 (𝑓 (𝑓 (𝑓 (𝑓 (𝑓 𝑥))))) = 6
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Simply Typed Lambda Calculus

Problem: Nothing stops nonsense like:

• Applying NOT to a number

• Adding a boolean to a string

• Using 42 as a function

Solution: Add a type system

Assign types to terms:

• true ∶ Bool
• 3 ∶ Nat
• 𝜆𝑥 ∶ Bool.not 𝑥 ∶ Bool → Bool

• 𝜆𝑥 ∶ Nat. 𝜆𝑦 ∶ Nat. 𝑥 + 𝑦 ∶ Nat → Nat → Nat

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 24/118



Type System Rules

Type checking rule: Can only apply 𝑓 ∶ 𝐴 → 𝐵 to arguments of type𝐴

Valid applications:

• (𝜆𝑥 ∶ Nat. 𝑥 + 1) ∶ Nat → Nat

• Apply to 5 ∶ Nat (correct)
• Result: 6 ∶ Nat

Invalid applications:

• Apply to true ∶ Bool (wrong)
• Type error: expected Nat, got Bool
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Why DoWe Care About Types?

Types catch errors at compile time:

• (𝜆𝑥 ∶ Nat. 𝑥 + 1) 5 (correct) (type checks)
• (𝜆𝑥 ∶ Nat. 𝑥 + 1) true (wrong) (type error!)

Types are documentation:

• map ∶ (𝐴 → 𝐵) → List𝐴 → List𝐵
• Type signature tells us what the function does!

Types enable optimization:

• Compiler knows exact memory layout

• Can inline functions safely

• Enables aggressive optimizations
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Types as Specifications

In dependent type theory: Types can express correctness properties

Examples:

• Vector Nat 5: a list of exactly 5 natural numbers

• sort : List Nat → {xs : List Nat /// xs.Sorted}: returns a sorted list

• safeDiv : (n : Nat) → (d : Nat) → (d ≠ 0) → Nat: division requires
proof denominator is non-zero

Motto: ”If it compiles, it’s probably correct”
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Curry-Howard Correspondence (1)

As it turns out, there’s a deep connection between Type Theory and Logic:

Programs ↔ Proofs
Types ↔ Propositions
Terms ↔ Proofs

→ ↔ ⟹

Examples:

• Type𝐴 → 𝐵 ≅ Proposition ”𝐴 implies𝐵”
• Term of type𝐴 → 𝐵 ≅ Proof of ”𝐴 ⟹ 𝐵”
• Type checking ≅ Proof checking!
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Curry-Howard: More Correspondence Examples

Extended correspondences:

Product type𝐴×𝐵 ↔ Conjunction𝐴 ∧ 𝐵
Sum type𝐴+𝐵 ↔ Disjunction𝐴 ∨ 𝐵

Empty type ↔ False
Unit type ↔ True

Type inhabitation ↔ Provability

Key point: A proof is a program, and vice versa!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 29/118



Curry-Howard: Modus Ponens Example

Logic: If we have𝐴 ⟹ 𝐵 and𝐴, we can derive𝐵
As a function:

-- The type is the proposition

def modus_ponens {A B : Prop} (h1 : A → B) (h2 : A) : B ::=

h1 h2 -- Apply the implication to the hypothesis

Observations:

• Type signature = Logical statement

• Function body = Proof

• Type checking = Proof verification
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Curry-Howard: Hypothetical Syllogism Example

Logic: (𝐴 ⟹ 𝐵) ⟹ (𝐵 ⟹ 𝐶) ⟹ (𝐴 ⟹ 𝐶)
As a function:

def chain {A B C : Prop} (f : A → B) (g : B → C) : A → C ::=

fun h : A =>= g (f h)

This is just function composition!

• Logical proof = Function composition

• Proving theorems = Writing programs

Key point: Writing programs = Constructing proofs!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 31/118



Curry-Howard: Digression on Uninhabited Types

Empty type: A type with no values

In logic: Corresponds to False

Key property: From False, anything follows (ex falso quodlibet)

If we have a term of type Empty, we can construct a term of any type:

absurd ∶ Empty → 𝐴

Why? Because we can never actually call this function (no terms of type Empty exist)!
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From the Lambda Calculus to Dependent Types

The Lambda Calculus gave us:

• Functions (𝜆-abstractions)
• Function application (𝛽-reduction)
• Higher-order functions

Simply Typed Lambda Calculus added:

• Type system for safety

• Type checking

• Curry-Howard correspondence

But we can go further...
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The Limitation of Simple Types

In simple types, we have things like:

• List Nat: list of natural numbers

• List String: list of strings

• List Bool: list of booleans

But these types don’t tell us:

• Howmany elements in the list?

• Is the list sorted?

• Are all elements positive?

(Non-trivial) Solution: Let types depend on values!
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What If Types Could Depend on Values?

Dependent types: Types that depend on values (as the name implies)

Examples:

• Vector Nat 3: a list of exactly 3 natural numbers

• Vector Nat n: a list of exactly 𝑛 natural numbers
• Matrix m n: an𝑚× 𝑛matrix
• Fin n: natural numbers less than 𝑛

This is Dependent Type Theory!
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Section 2

Types



Types in Lean

Types 𝜎, 𝜏, 𝜐:
• Type variables: 𝛼, 𝛽, 𝛾
• Basic types: Nat, Int, Bool, String
• Complex types: 𝑇 𝜎1 … 𝜎𝑁 (e.g. List (Option Nat), but don’t worry about it for now)

Some type constructors are written infix:→ (function type)

Function arrow is right-associative:

𝜎1 → 𝜎2 → 𝜎3 → 𝜏 = 𝜎1 → (𝜎2 → (𝜎3 → 𝜏))

Polymorphic types use type variables:

#check fun {α : Type} (x : α) =>= x -- id : α → α (type)

#check List -- Type → Type (type constructor)

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 37/118



Type Examples (in Lean)

Types indicate which values an expression may evaluate to.

#check ℕ -- Type (natural numbers)

#check ℤ -- Type (integers)

#check Empty -- Type (no values, False)

#check Unit -- Type (one value, trivial type)

#check Bool -- Type (true and false)

-- Function types

#check ℕ → ℤ -- Nat to Int

#check ℤ → ℕ -- Int to Nat (partial!)

#check Bool → ℕ → ℤ -- Bool → (ℕ → ℤ)

#check (Bool → ℕ) → ℤ -- Different since it takes a function

#check ℕ → (Bool → ℕ) → ℤ -- Explicit parentheses
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More Type Examples (in Lean)

-- Polymorphic types

#check List ℕ -- List of natural numbers

#check List (List String) -- List of lists of strings

#check α → α -- Generic identity function type

-- Function types with multiple arrows

#check Nat → Nat → Nat -- Two arguments, one result

#check (Nat → Nat) → Nat -- Takes function as argument

#check Nat → (Nat → Nat) -- Returns a function

Key point: Parentheses matter!

• Nat → Nat → Nat = Nat → (Nat → Nat)

• (Nat → Nat) → Nat is different (higher-order)
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Type Constructors

Type constructors build new types from existing ones

-- List is a type constructor: Type → Type

#check List -- Type → Type

#check List Nat -- Type

-- Product types (tuples)

#check Nat × String -- Type

#check (3, ”hello”) -- Nat × String

-- Sum types (disjoint union)

#check Nat � String -- Type

#check Sum.inl 42 -- Nat � String

#check Sum.inr ”hi” -- Nat � String
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Option Type

Option: Represents a value that may or may not exist

-- Option type (maybe)

#check Option Nat -- Type

#check some 5 -- Option Nat (has a value)

#check none -- Option Nat (no value)

-- Useful for partial functions

def safeHead (xs : List Nat) : Option Nat ::=

match xs with
| [] =>= none

| x ::: _ =>= some x

#eval safeHead [1, 2, 3] -- some 1

#eval safeHead [] -- none

Key benefit: No null pointer exceptions!
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Product Types (Pairs)

Product type𝐴×𝐵: Contains a value of type𝐴 AND a value of type𝐵

Examples:

• Nat × String: a number and a string

• (3, ”hello”) : Nat × String

• Bool × Bool × Bool: three booleans

Access components:

• p.1: the first component

• p.2: the second component

In logic: Corresponds to conjunction (𝐴 ∧ 𝐵)
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Sum Types (Disjoint Union)

Sum type𝐴+𝐵: Contains a value of type𝐴 OR a value of type𝐵

Constructors:

• Sum.inl : A → A + B (left injection)

• Sum.inr : B → A + B (right injection)

Examples:

• Sum.inl 5 : Nat + String: a number

• Sum.inr ”hello” : Nat + String: a string

In logic: Corresponds to disjunction (𝐴 ∨ 𝐵)
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Terms



Terms

The terms (expressions) of type theory:

• Constants: 𝑐 (built-in or defined values)
• Variables: 𝑥 (parameters or bound variables)

• Applications: 𝑡 𝑢 (function applied to argument)

• Lambda abstractions: fun x ↦ t (anonymous functions)

Application is left-associative:

f x y z = ((f x) y) z

Use #check to see the type of any term!
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Term Examples

Consider how Lean allows us to construct simple lambda abstractions, abstractions with
multiple (curried) parameters, and higher-order logic.

-- Simple lambda abstractions

#check fun x : ℕ =>= x -- ℕ → ℕ

#check fun (x : ℕ) =>= x + 1 -- ℕ → ℕ

-- Multiple parameters (curried)

#check fun (x y : ℕ) =>= x + y -- ℕ → ℕ → ℕ

-- Higher-order functions

#check fun f : ℕ → ℕ =>= fun g : ℕ → ℕ =>=

fun h : ℕ → ℕ =>= fun x : ℕ =>= h (g (f x))

-- More concise (type inference!)

#check fun (f g h : ℕ → ℕ) (x : ℕ) =>= h (g (f x))

Note: functions are treated as ”first-class values”; we don’t need to annotate every
intermediate type!
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Type Inference

Type inference: Lean can often figure out types automatically!
We will soon cover in detail exactly how Lean does that.

-- Explicit types

#check fun (x : Nat) =>= x + 1 -- Nat → Nat

-- Inferred types

#check fun x =>= x + 1 -- Nat → Nat (inferred!)

-- Fully polymorphic

#check fun x =>= x -- α → α (works for any type!)

-- Context helps inference

def double (n : Nat) ::= n * 2

#check fun x =>= double x -- Nat → Nat (from double's type)

Best practice: Omit types when clear, add them for clarity
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Opaque Constants and Axioms

After the opaque commands, we have no information about 𝑎 and 𝑏 beyond their type.

-- Opaque constants (axioms without proofs)

opaque a : ℤ

opaque b : ℤ

opaque f : ℤ → ℤ

opaque g : ℤ → ℤ → ℤ

#check fun x : ℤ =>= g (f (g a x)) (g x b)

#check fun x =>= g (f (g a x)) (g x b) -- Type inferred

#check fun x =>= x -- Fully polymorphic

Opaque: Declared but not defined (typically used in conjuction with axioms)
For example:

opaque a : ℤ

opaque b : ℤ

axiom a_less_b :

a < b
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Type Checking and Type Inference

Two key problems in type theory:

Type Checking: Given term 𝑡 and type 𝜎, does 𝑡 ∶ 𝜎?
• Decidable for simple type theory

• Lean’s kernel checks all proofs

• Ensures logical soundness

Type Inference: Given term 𝑡, find its type 𝜎
• Also decidable for simple types

• Lets us omit type annotations

• Makes code more readable
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Type Judgments

Type judgment: 𝐶 ⊢ 𝑡 ∶ 𝜎

Read: ”In context𝐶, term 𝑡 has type 𝜎”

Context𝐶: Tracks local variable types
• 𝐶 = {𝑥1 ∶ 𝜎1, 𝑥2 ∶ 𝜎2,…}
• Variables and their types

• Built up during type checking

Example:
{𝑥 ∶ Nat, 𝑦 ∶ Bool} ⊢ 𝑥 + 1 ∶ Nat
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Typing Rules

Rules are written as a fraction. In formal logic, these are inference rules: if the stuff on top (the
premise) is true, then the stuff on the bottom (the conclusion) is also true.

Constant rule:

C ⊢ 𝑐 ∶ 𝜎
Cst if 𝑐 is declared with type 𝜎

Variable rule:

C ⊢ 𝑥 ∶ 𝜎
Var if 𝑥 ∶ 𝜎 ∈ 𝐶

Application rule:
𝐶 ⊢ 𝑡 ∶ 𝜎 → 𝜏 𝐶 ⊢ 𝑢 ∶ 𝜎

𝐶 ⊢ 𝑡 𝑢 ∶ 𝜏
App

Abstraction rule:
𝐶, 𝑥 ∶ 𝜎 ⊢ 𝑡 ∶ 𝜏

𝐶 ⊢ (fun 𝑥 ∶ 𝜎 ↦ 𝑡) ∶ 𝜎 → 𝜏
Fun
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Type Checking Examples (1)

Check: ⊢ (𝜆𝑥 ∶ Nat. 𝑥 + 1) 5 ∶ Nat

Step 1: Check the function

• In context𝐶 = {𝑥 ∶ Nat}
• Body 𝑥 + 1 has type Nat
• By Abstraction rule: ⊢ 𝜆𝑥 ∶ Nat. 𝑥 + 1 ∶ Nat → Nat

Step 2: Check the application

• Function: Nat → Nat

• Argument: 5 ∶ Nat
• By Application rule: Result type is Nat (correct)
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Type Checking Examples (2)

Check: {𝑓 ∶ Nat → Bool} ⊢ 𝑓 5 ∶ Bool

Given:

• Context: 𝐶 = {𝑓 ∶ Nat → Bool}
• Term: 𝑓 5

Type checking:

• 𝐶 ⊢ 𝑓 ∶ Nat → Bool (by Variable rule)

• 𝐶 ⊢ 5 ∶ Nat (by Constant rule)
• 𝐶 ⊢ 𝑓 5 ∶ Bool (by Application rule) (correct)
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Type Checking Examples (3)

Check: ⊢ (𝜆𝑓 ∶ Nat → Nat. 𝜆𝑥 ∶ Nat. 𝑓 (𝑓 𝑥)) ∶ ?

Step 1: Check inner lambda

• Context: 𝐶 = {𝑓 ∶ Nat → Nat, 𝑥 ∶ Nat}
• Body: 𝑓 (𝑓 𝑥) has type Nat
• Inner lambda: Nat → Nat

Step 2: Check outer lambda

• Context: 𝐶 = {𝑓 ∶ Nat → Nat}
• Body: 𝜆𝑥 ∶ Nat. 𝑓 (𝑓 𝑥) has type Nat → Nat

• Outer lambda: (Nat → Nat) → (Nat → Nat) (correct)
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Sidenote: Variable Shadowing

Shadowing: Inner variables hide outer ones with the same name

Example:
𝜆𝑥 ∶ Nat. 𝜆𝑥 ∶ Bool. 𝑥

Which 𝑥? The inner one (Bool)!

Context tracking:

• Outer context: {𝑥 ∶ Nat}
• Inner context: {𝑥 ∶ Nat, 𝑥 ∶ Bool}
• Rightmost occurrence shadows: 𝑥 ∶ Bool

Best practice: Avoid shadowing (confusing!)
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Type Inhabitation

Type Inhabitation Problem: Given a type 𝜎, find a term of that type

Key fact: This problem is undecidable in general!

• Some types have no inhabitants (like Empty)

• Finding inhabitants = constructing proofs

• By Curry-Howard: Finding proof = Solving halting problem

Why do we care? Lean’s exact? tactic tries this! (don’t worry about this too much, we will get
more into tactics later)
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Type Inhabitation: Strategy

Recursive procedure (doesn’t always terminate):

1. If 𝜎 = 𝜏 → 𝜐, try fun x =>= _

2. Look for constants/variables 𝑐 ∶ 𝜏1 → ⋯ → 𝜏𝑁 → 𝜎
3. Build term 𝑐 _ … _ and recursively fill holes

Example: Inhabit Nat → Nat

• Try: fun x =>= _

• Look for: variable 𝑥 ∶ Nat
• Solution: fun x =>= x (identity function)
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Type Inhabitation Example

Problem: Inhabit (𝛼 → 𝛽 → 𝛾) → ((𝛽 → 𝛼) → 𝛽) → 𝛼 → 𝛾

opaque α : Type
opaque β : Type
opaque γ : Type

def someFunOfType : (α → β → γ) → ((β → α) → β) → α → γ ::=

fun f g a =>= f a (g (fun b =>= a))

-- f : α → β → γ

-- g : (β → α) → β

-- a : α

-- Need to produce: γ

--

-- f needs: α and β

-- We have: a : α

-- For β: use g applied to (fun b =>= a)

-- Result: f a (g (fun b =>= a)) : γ (correct)
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Type Inhabitation: More Examples (1)

Example 1: 𝐴 → 𝐴
• Solution: ?

Example 2: 𝐴 → 𝐵 → 𝐴
• Solution: ? (hint: constant)

Example 3: (𝐴 → 𝐵) → (𝐵 → 𝐶) → (𝐴 → 𝐶)
• Solution: ? (hint: composition)

Example 4: Empty → 𝐴
• Solution: ? (hint: absurd)
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Type Inhabitation: More Examples (2)

Example 1: 𝐴 → 𝐴
• Solution: fun x =>= x (identity)

Example 2: 𝐴 → 𝐵 → 𝐴
• Solution: fun x y =>= x (const)

Example 3: (𝐴 → 𝐵) → (𝐵 → 𝐶) → (𝐴 → 𝐶)
• Solution: fun f g x =>= g (f x) (composition)

Example 4: Empty → 𝐴
• Solution: fun x =>= match x with . (absurd)
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For Culture: Uninhabited Types

Some types have no inhabitants!

Examples:

• Empty: no constructors (since nothing can construct it)

• 𝐴 → Empty where𝐴 is inhabited: there is no way to produce Empty

• (𝐴 → 𝐵) → 𝐴 in intuitionistic logic (Peirce’s law)

In logic: Corresponds to unprovable propositions

• Empty = False statement or logical contradiction

• Empty → 𝐴: “I can produce a value of any type A as long as you give me a value of
Empty” (impossible!)

• Uninhabited type = Unprovable proposition
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Inductive Types: The Foundation

Inductive type: A type consisting of all values built using its constructors, and nothing else

General format:

inductive TypeName (params : Types) : Type where

| constructor1 : constructor1_type

| constructor2 : constructor2_type

| .....

| constructorN : constructorN_type

Key properties:

• No junk: Only values from constructors exist

• No confusion: Different constructors≠ different values

• Finite: No infinite chains of constructors
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Natural Numbers: Peano Arithmetic (in Lean)

Lean’s most fundamental inductive type:

namespace MyNat

inductive Nat : Type where

| zero : Nat -- Base case: 0

| succ : Nat → Nat -- Recursive: successor

-- How numbers are represented:

-- 0 = Nat.zero

-- 1 = Nat.succ Nat.zero

-- 2 = Nat.succ (Nat.succ Nat.zero)

-- 3 = Nat.succ (Nat.succ (Nat.succ Nat.zero))

#check Nat

#check Nat.zero

#check Nat.succ

#check Nat.succ (Nat.succ Nat.zero) -- This is 2!

end MyNat

Why unary? Makes induction and recursion natural!

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 66/118



Peano Axioms

For Culture: Peano’s axioms for natural numbers:

1. 0 is a natural number
2. Every natural number has a successor

3. 0 is not the successor of any number
4. Different numbers have different successors (injective)

5. Induction principle holds

How do we do this in Lean?

• Nat.zero gives us axiom (1)

• Nat.succ gives us axiom (2)

• ”No confusion” gives us axioms (3) and (4)

• Pattern matching gives us axiom (5)
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Arithmetic Expressions: Abstract Syntax Trees (in Lean)

Inductive types naturally represent syntax trees!
This is extremely useful for compiler/interpreter design

inductive AExp : Type where

| num : ℤ → AExp -- Literal number

| var : String → AExp -- Variable name

| add : AExp → AExp → AExp -- e1 + e2

| sub : AExp → AExp → AExp -- e1 - e2

| mul : AExp → AExp → AExp -- e1 * e2

| div : AExp → AExp → AExp -- e1 / e2

-- Example: (x + 3) * (y - 2)

def example_expr : AExp ::=

AExp.mul

(AExp.add (AExp.var ”x”) (AExp.num 3))

(AExp.sub (AExp.var ”y”) (AExp.num 2))

#check example_expr -- AExp
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Lists: Polymorphic Recursive Types

Definition: A ”polymorphic recursive type” is a type that can take other types as parameters
(like generics), allowing functions or data structures to operate on different types in a flexible
manner. It is the workhorse of functional programming:

-- Conceptual definition (List is built-in)

inductive MyList (α : Type) where

| nil : MyList α -- Empty list

| cons : α → MyList α → MyList α -- Head ::: Tail

-- Notation: [1, 2, 3] desugars to:

-- List.cons 1 (List.cons 2 (List.cons 3 List.nil))

#check List ℕ -- Type

#check List.nil -- List α

#check List.cons 1 List.nil -- List ℕ (the list [1])

-- Polymorphism: Works for ANY type α!

#check ([1, 2, 3] : List Nat)

#check ([”a”, ”b”] : List String)

#check ([[1], [2, 3]] : List (List Nat))
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Binary Trees

Recall: A binary tree is a hierarchical data structure in which each node has at most two
children, referred to as the “left child” and the “right child”.

inductive BTree (α : Type) : Type where

| empty : BTree α

| node : BTree α → α → BTree α → BTree α

-- Example tree:

-- 5

-- / \

-- 3 7

-- /

-- 1

def exampleTree : BTree Nat ::= -- Explicitly write out the binary tree using its constructors

BTree.node

(BTree.node (BTree.node BTree.empty 1 BTree.empty) 3 BTree.empty)

5

(BTree.node BTree.empty 7 BTree.empty)

Uses: Search trees, sorting, expression trees, game trees, ...
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Result Type (Either)

Result: Represents success or failure

Cool consequence: we can encode program state using the type system itself!

inductive Result (α : Type) : Type where

| success : α → Result α

| failure : String → Result α

-- Example: Safe division

def safeDiv (n : Nat) (d : Nat) : Result Nat ::=

if d = 0 then
Result.failure ”Division by zero”

else
Result.success (n / d)

#eval safeDiv 10 2 -- success 5

#eval safeDiv 10 0 -- failure ”Division by zero”

Benefit: Explicit error handling in types!
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PatternMatching: Defining Functions

Fact: we can define functions by patternmatching on constructors:

-- Fibonacci numbers

def fib : ℕ → ℕ

| 0 =>= 0

| 1 =>= 1

| n + 2 =>= fib (n + 1) + fib n

#eval fib 10 -- Result: 55

-- Addition (recursive on second argument)

def add : ℕ → ℕ → ℕ

| m, Nat.zero =>= m

| m, Nat.succ n =>= Nat.succ (add m n)

#eval add 3 4 -- Result: 7

Lean verifies: Patterns are exhaustive and terminating!
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PatternMatching: The n+k Pattern

Special pattern: n + kmatches numbers≥ 𝑘

Example: n + 2

• Matches: 2, 3, 4, 5,…
• Binds: 𝑛 = 0, 1, 2, 3,…
• Does not match: 0, 1

Usage in Fibonacci:

• fib 0 =>= 0

• fib 1 =>= 1

• fib (n + 2) =>= fib (n + 1) + fib n

This is more elegant than explicit succ patterns!
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PatternMatching: Multiple Arguments

You can also very easily perform pattern matching on multiple arguments!

-- Pattern match multiple arguments

def min : ℕ → ℕ → ℕ

| 0, _ =>= 0

| _, 0 =>= 0

| n+1, m+1 =>= (min n m) + 1

#eval min 3 5 -- Result: 3

#eval min 5 3 -- Result: 3

-- isEven using n+2 pattern

def isEven : ℕ → Bool

| 0 =>= true

| 1 =>= false

| n + 2 =>= isEven n

#eval isEven 0 -- Result: true

#eval isEven 1 -- Result: false

#eval isEven 10 -- Result: true

#eval isEven 15 -- Result: false
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Structural Recursion

Structural recursion: Recursion that ”peels off” constructors

-- Length of a list (structurally recursive)

def length {α : Type} : List α → Nat

| [] =>= 0

| x ::: xs =>= 1 + length xs -- Perform recursion on xs (smaller!)

#eval length [1, 2, 3, 4] -- Result: 4

-- Append two lists

def append {α : Type} : List α → List α → List α

| [], ys =>= ys

| x ::: xs, ys =>= x ::: append xs ys -- Perform recursion on xs

#eval append [1, 2] [3, 4, 5] -- Result: [1, 2, 3, 4, 5]

Pedantic note: It is a generalization of mathematical induction to arbitrary inductive types. To prove a goal
𝑛 ∶ ℕ ⊢ 𝑃[𝑛] by structural induction on𝑛, it suffices to show two subgoals:

⊢ 𝑃[0] (base case)
𝑘 ∶ ℕ, 𝑖ℎ ∶ 𝑃 [𝑘] ⊢ 𝑃 [𝑘 + 1] (induction step)
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More List Functions

Consider some very important list functions: reverse,
map (apply function to each element), and filter (keep elements satisfying predicate).

-- Reverse a list

def reverse {α : Type} : List α → List α

| [] =>= []

| x ::: xs =>= reverse xs +++ [x]

#eval reverse [1, 2, 3] -- Result: [3, 2, 1]

-- Map: Apply function to each element

def listMap {α β : Type} (f : α → β) : List α → List β

| [] =>= []

| x ::: xs =>= f x ::: listMap f xs

#eval listMap (· * 2) [1, 2, 3] -- Result: [2, 4, 6]

-- Filter: Keep elements satisfying predicate

def listFilter {α : Type} (p : α → Bool) : List α → List α

| [] =>= []

| x ::: xs =>= if p x then x ::: listFilter p xs else listFilter p xs

Note: These functions are vital in functional programming and you will use them all the time!
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Fold: The Universal List Function

Fold: Process a list to produce a single value
Intuition: It literally ”folds” the list into a value (right to left or left to right)

-- Left fold

def foldl {α β : Type} (f : β → α → β) (init : β) : List α → β

| [] =>= init

| x ::: xs =>= foldl f (f init x) xs

-- Right fold

def foldr {α β : Type} (f : α → β → β) (init : β) : List α → β

| [] =>= init

| x ::: xs =>= f x (foldr f init xs)

-- Examples

#eval foldl (· + ·) 0 [1, 2, 3, 4] -- Result: 10 (sum)

#eval foldr (· ::: ·) [] [1, 2, 3] -- Result: [1, 2, 3] (identity)

#eval foldl (fun acc x =>= x ::: acc) [] [1, 2, 3] -- Result: [3, 2, 1] (reverse)
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Fold Left vs Fold Right

Key difference: Order of operations

foldl (left fold): (((𝑧 ∘ 𝑥1) ∘ 𝑥2) ∘ 𝑥3)
• Tail recursive (efficient)

• Associates to the left

• Example: foldl (-) 10 [1,2,3]= ((10 − 1) − 2) − 3 = 4

foldr (right fold): (𝑥1 ∘ (𝑥2 ∘ (𝑥3 ∘ 𝑧)))
• Not tail recursive

• Associates to the right

• Example: foldr (-) 10 [1,2,3]= 1 − (2 − (3 − 10)) = −8
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Named Arguments

The colon (:) acts as a boundary (def mul… : ℕ → ℕ): arguments placed to its left are fixed
parameters available throughout the function, while those to its right are the inputs being
analyzed via pattern matching.

-- Parameter m doesn't need pattern matching

def mul (m : ℕ) : ℕ → ℕ

| Nat.zero =>= Nat.zero

| Nat.succ n =>= add m (mul m n) -- m is in scope!

#eval mul 3 4 -- Result: 12

-- Generic iterator (higher-order function)

def iter (α : Type) (z : α) (f : α → α) : ℕ → α

| Nat.zero =>= z

| Nat.succ n =>= f (iter α z f n)

-- Exponentiation using iter

def power (m n : ℕ) : ℕ ::=

iter ℕ 1 (mul m) n

#eval power 2 10 -- Result: 1024
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Implicit Type Parameters

-- Type parameters can be implicit!

def reverse {α : Type} : List α → List α

| [] =>= []

| x ::: xs =>= reverse xs +++ [x]

-- Lean infers α automatically

#eval reverse [1, 2, 3] -- α = Nat (inferred!)

#eval reverse [”a”, ”b”, ”c”] -- α = String (inferred!)

-- Can make explicit with @

#eval @reverse Nat [1, 2, 3]

Syntax:

• {α : Type} – Implicit (inferred)

• (α : Type) – Explicit (must provide)
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Evaluating Expressions

First, define a way to look up the values of strings. In Lean, a common way to represent this is
as a function String→ ℤ.

def Env ::= String → ℤ -- An environment maps variable names to their integer values

def my_env : Env ::= fun name =>= -- Example environment where x = 10 and y = 5

if name = ”x” then 10

else if name = ”y” then 5

else 0 -- Default value for unknown variables

You can use patternmatching on the inductive type. This is the functional way to ”extract” the
data from the constructors!

def eval (env : Env) : AExp → ℤ

| AExp.num i =>= i -- Literal

| AExp.var x =>= env x -- Lookup variable

| AExp.add e₁ e₂ =>= eval env e₁ + eval env e₂

| AExp.sub e₁ e₂ =>= eval env e₁ - eval env e₂

| AExp.mul e₁ e₂ =>= eval env e₁ * eval env e₂

| AExp.div e₁ e₂ =>= eval env e₁ / eval env e₂
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Evaluator Example

-- Example environment

def myEnv : String → ℤ

| ”x” =>= 5

| ”y” =>= 3

| _ =>= 0

-- (x + 3) * (y - 2) where x=5, y=3

def myExpr : AExp ::=

AExp.mul

(AExp.add (AExp.var ”x”) (AExp.num 3))

(AExp.sub (AExp.var ”y”) (AExp.num 2))

#eval eval myEnv myExpr -- Result: (5+3)*(3-2) = 8

Key point: Pattern matching + recursion = an actual (simple) interpreter!
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Termination Checking

Lean only accepts functions proven to terminate!

Why? Non-terminating functions can prove False:

• If loop : ℕ → ℕ where loop n = loop n + 1

• Then loop 0 = loop 0 + 1

• Subtract both sides: 0 = 1

• From contradiction, anything follows! (Logical inconsistency)

What Lean accepts:

• Structural recursion: Recursive calls on structurally smaller arguments

• Well-founded recursion: Recursive calls on ”smaller” arguments (custom ordering)

• Mutual recursion (multiple functions calling each other)
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Why DoWe Care About Termination?

Example of inconsistency:

Suppose we allowed:

• def loop (n : Nat) : Nat ::= loop n + 1

Then:

loop 0 = loop 0 + 1
loop 0 = (loop 0 + 1) + 1
loop 0 = loop 0 + 2

⋮
0 = 𝑛 for any 𝑛

Disaster: We can prove anything! The logic is broken.
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What Lean Rejects

Consider a couple of examples of functions Lean will reject.

-- (wrong) Not structurally smaller

def bad (n : ℕ) : ℕ ::= bad n + 1

-- (wrong) Growing, not shrinking

def worse (n : ℕ) : ℕ ::= worse (n + 1)

-- (wrong) Not obviously decreasing

def tricky (n : ℕ) : ℕ ::=

if n = 0 then 0 else tricky (n - 1 + 1)

-- (correct) Structurally decreasing

def good (n : ℕ) : ℕ ::=

if n = 0 then 0 else good (n - 1)

Lean’s termination checker: Very smart, but not perfect!
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Section 8

Theorem Statements



Theorems: Propositions as Types

Theorem: Like def, but result is a proposition

-- Commutativity of addition

theorem add_comm (m n : ℕ) :

add m n = add n m ::=

sorry -- Proof to be filled

-- Associativity of addition

theorem add_assoc (l m n : ℕ) :

add (add l m) n = add l (add m n) ::=

sorry

-- Multiplication commutes

theorem mul_comm (m n : ℕ) :

mul m n = mul n m ::=

sorry

sorry is a placeholder that assumes the proposition (unsafe!).
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More Theorems

-- Reverse is involutive

theorem reverse_reverse {α : Type} (xs : List α) :

reverse (reverse xs) = xs ::=

sorry

-- Append is associative

theorem append_assoc {α : Type} (xs ys zs : List α) :

append (append xs ys) zs = append xs (append ys zs) ::=

sorry

-- Length of append

theorem length_append {α : Type} (xs ys : List α) :

length (append xs ys) = add (length xs) (length ys) ::=

sorry

Later: We’ll learn to write actual proofs!
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Theorems vs Definitions

What’s the difference?

Definition (def):

• Defines a computational function

• Can be evaluated

• Example: def add : Nat → Nat → Nat

Theorem (theorem):

• States a property (proposition)

• Provides a proof

• Example: theorem add_comm : add m n = add n m

Key point: Both are functions in Lean’s type theory!
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Axioms and Opaque Definitions

Axioms: Theorems without proofs (dangerous!)

opaque a : ℤ

opaque b : ℤ

axiom a_less_b : a < b -- Assumed without proof

-- Can use in other proofs

theorem a_not_equal_b : a ≠ b ::= by
intro h

have : a < a ::= h � a_less_b

omega -- Contradiction!

Warning: Axioms can introduce inconsistencies!

• axiom false_axiom : False breaks everything

• Use axiom only when absolutely necessary
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Standard Axioms in Lean

Lean includes some standard axioms:

1. Propositional extensionality:

• Two propositions are equal if they’re logically equivalent

• (P ↔ Q) → (P = Q)

2. Quotient types:

• Construct types from equivalence relations

• Needed for mathematical structures

3. Classical logic:

• Law of excluded middle: P ∨ ¬P

• Choice: (∀ x, ∃ y, P x y) → ∃ f, ∀ x, P x (f x)
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Section 9

Dependent Types



What are Dependent Types?

Simple types: Types don’t depend on values

• List Nat: type doesn’t know list length

• Nat → Nat: function type doesn’t specify behavior

• Array Int: array size not in type

Dependent types: Types CAN depend on values!

• Vector Nat 3: vector of exactly 3 natural numbers

• (n : Nat) → Vector Nat n: returns vector of length 𝑛
• {i : Nat /// i < 10}: natural numbers less than 10

Why powerful? Encode properties in types!
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Dependent Types Example: Vectors

Problem: Lists don’t track length in type

-- Regular list (length unknown)

def badHead (xs : List Nat) : Nat ::=

xs.head! -- Crashes if empty

-- Dependent type solution: Vector (list with length)

inductive Vector (α : Type) : Nat → Type where

| nil : Vector α 0 -- Empty vector

| cons : α → {n : Nat} → Vector α n → Vector α (n + 1)

-- Now head is SAFE - type guarantees non-empty!

def head {α : Type} {n : Nat} (v : Vector α (n + 1)) : α ::=

match v with
| Vector.cons x _ =>= x -- No such crashes possible

Key: Type Vector α n depends on value n : Nat!
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Vector Operations

Operations that preserve length:

Append:

• Type: Vector α n → Vector α m → Vector α (n + m)

• Result length is the sum of inputs!

Map:

• Type: (α → β) → Vector α n → Vector β n

• Preserves the length exactly!

Zip:

• Type: Vector α n → Vector β n → Vector (α × β) n

• Requires the same length (enforced by types!)
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Dependent Types Example: Bounded Numbers

Fin n: Natural numbers less than 𝑛

-- Fin n = {i : Nat /// i < n}

#check Fin 10 -- Type (numbers 0-9)

#check (5 : Fin 10) -- Valid: 5 < 10

#check (15 : Fin 10) -- (wrong) Type error: 15 not < 10

-- Safe array indexing

def safeGet {α : Type} {n : Nat} (arr : Array α)

(h : arr.size = n) (i : Fin n) : α ::=

arr[i] -- No bounds check needed -> type guarantees!

-- Example usage

def myArray : Array Nat ::= #[10, 20, 30, 40, 50]

#eval safeGet myArray rfl (2 : Fin 5) -- Result: 30 (safe!)

Benefit: Eliminates array bounds exceptions at compile time!
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Subtype: Refined Types

Subtype: Type with a predicate

Syntax: {x : α /// P x}

Read: ”Values of type 𝛼 such that 𝑃(𝑥) holds”

Examples:

• {n : Nat /// n < 10}: natural numbers less than 10

• {xs : List Nat /// xs.Sorted}: sorted lists

• {x : Int /// x ≠ 0}: non-zero integers

Construction: Provide value + proof

• ⟨5, proof_that_5_lt_10⟩ : {n : Nat /// n < 10}
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Dependent Function Types (Pi Types)

Pi types (Π-types): Functions where output type depends on input value

-- Type depends on the value n

def pick (n : ℕ) : {i : ℕ /// i ≤ n} ::=

⟨n, Nat.le_refl n⟩ -- Return n with proof n ≤ n

#check pick -- (n : ℕ) → {i : ℕ /// i ≤ n}

#eval (pick 5).val -- Result: 5

-- Polymorphic identity has dependent type

def id {α : Type} (x : α) : α ::= x

#check @id -- {α : Type} → α → α

-- Read: ”For any type α, given x : α, return something of type α”

Key: The output type depends on the input!
To be clear: They generalize standard functions by allowing the result type to be a ’dynamic’
calculation based on the specific input value, e.g. a function that returns a proof specifically
tailored to the number provided as an argument.
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More Pi Type Examples

Consider the replicate function that creates a list of 𝑛 copies of 𝑥 implemented via
Π-types.

-- Replicate: Creates a list of n copies of x

def replicate {α : Type} (n : Nat) (x : α) : List α ::=

match n with
| 0 =>= []

| n+1 =>= x ::: replicate n x

#eval replicate 5 ”hi” -- Result: [”hi”, ”hi”, ”hi”, ”hi”, ”hi”]

-- The type of replicate: {α : Type} → (n : Nat) → α → List α

-- The list type doesn't depend on n, but it could.....

-- For instance, it could return a vector:

-- {α : Type} → (n : Nat) → α → Vector α n

While the replicate function shown here returns a standard List,Π-types allow us to be
even more precise by returning a ’Vector’∏𝑛∶ℕ Vec(ℝ, 𝑛), a data type that encodes its own
length directly into its type signature for compile-time safety.
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Dependent Types in Practice

Real-world use cases:

1. Proven-correct sorting:

-- Return value is proven to be sorted!

def sort (xs : List Nat) :

{ys : List Nat /// ys.Sorted ∧ ys.length = xs.length} ::=

sorry -- (implementation with proof here)

2. Matrix multiplication with dimension checking:

def matmul {m n p : Nat}

(A : Matrix m n) (B : Matrix n p) : Matrix m p ::=

sorry -- (the type ensures the dimensions match)
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Protocol State Machines

3. Protocol statemachines:

inductive ConnectionState where

| disconnected : ConnectionState

| connected : ConnectionState

-- Connection type DEPENDS on state

def Connection : ConnectionState → Type ::=

fun state =>= match state with
| .disconnected =>= Unit

| .connected =>= { handle : Nat }

-- Can only send after it connected, this is directly enforced by the type!

def send (conn : Connection .connected) (msg : String) : IO Unit ::=

sorry

Benefit: Protocol violations become type errors!
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Dependent Types: Term Depending on...

Term depending on a term:

fun x : Nat =>= x + 1

• Regular function:
input (term) → output (term)

• This is just ordinary simple type theory

Term depending on a type:

fun {𝛼 : Type} (x : 𝛼) =>= x

• Polymorphic function: takes type 𝛼,
then term 𝑥 ∶ 𝛼

• This is parametric polymorphism

Type depending on a type:

List : Type → Type

• Type constructor: takes type 𝛼,
returns type List 𝛼

• This is a type-level function

These are the building blocks of the Lambda
Cube.
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Dependent Types: Type Depending on Term

The key case – Type depending on a term:

Vector 𝛼 : Nat → Type

• Takes a value 𝑛 ∶ Nat (a term!)
• Returns a type Vector 𝛼 𝑛
• Different values give different types!

This is what ”dependent type” strictly means:

• A type family indexed by values

• The type depends on runtime data

• This would not have been possible in
simple type theory

More examples:

• Fin : Nat → Type

– numbers less than 𝑛
• Matrix m n : Nat → Nat →
Type –𝑚× 𝑛matrices

• Array 𝛼 n : Nat → Type

– arrays of size 𝑛

This property allows Lean to verify array bounds
at compile-time.
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Barendregt’s 𝜆-cube (1)

In the Calculus of Constructions (Lean’s foundation):

Body (t) Argument (x) Description
Term depending on Term Simply typed function

fun x : Nat =>= x + 1

Type depending on Term Dependent type
Vector α : Nat → Type

Term depending on Type Polymorphic term
fun {α} (x : α) =>= x

Type depending on Type Type constructor
List : Type → Type

Lean supports all four corners of the 𝜆-cube!
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Barendregt’s 𝜆-cube (2)

Type systems hierarchy (”+” = ”adds the ability to form...” / ”introduces dependency...”):

• Simply typed 𝜆-calculus: Term → Term

• System F (polymorphism): + Term → Type

• System𝐹𝜔 (type operators): + Type → Type

• 𝜆𝑃 (dependent types): + Type → Term
• Calculus of Constructions: All four!

Each corner adds ”expressiveness”:

• Polymorphism – Generic functions

• Type operators – Generic type constructors

• Dependent types – Types that depend on values

PROOF101 Week 2 Dependent Type Theory Daniel Dia & Guest Lecturers (AUB) 106/118



Section 10

The Lean Architecture



Review: From Source Code to the Verified Kernel

Lean’s architecture (Review):
Trusted kernel with an untrusted elaborator

1. Source code (what you write):

• High-level, readable syntax

• Type inference, implicit arguments

• Tactics, notation, macros

2. Elaborator (untrusted):

• Fills in implicit arguments

• Resolves type class instances

• Expands macros and notation

• Compiles tactics to proof terms

3. Kernel (trusted):

• Small, verified core (∼10k lines)
• Type checks all terms

• Ensures logical soundness

• De Bruijn indices, no names
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For Culture: The De Bruijn Criterion

De Bruijn criterion: Trust only a small, verified kernel

Named after: Nicolaas Govert de Bruijn (1918-2012)

• Dutch mathematician

• Created Automath (first proof assistant)

• Emphasized minimal trusted base

The principle:

• Keep the trusted core as small as possible

• All proof terms flow through the kernel

• Bugs in elaborator don’t compromise soundness
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Key: Why This SeparationMatters

Benefits:

• Elaborator can be complex without risking soundness

• Bugs in tactics don’t compromise proofs

• Easy to add new features (tactics, notation)

• Kernel is small enough to verify by hand

Example: The simp tactic

• Elaborator: Complex rewrite engine (thousands of lines)

• Output: Simple chain of rewrite proof terms

• Kernel: Verifies each rewrite is valid

• If simp has a bug, kernel rejects the proof!

Motto: ”Don’t trust, verify” - Even if elaborator is buggy, kernel catches it!
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For Culture: De Bruijn Indices

Problemwith variable names: Capture, shadowing, alpha-equivalence

Solution: Use numbers instead of names!

De Bruijn index: Number of binders between variable and its binder

Examples:

• 𝜆𝑥. 𝑥 becomes 𝜆. 0 (refers to nearest binder)
• 𝜆𝑥. 𝜆𝑦. 𝑥 becomes 𝜆. 𝜆. 1 (skip one binder)
• 𝜆𝑥. 𝜆𝑦. 𝑦 becomes 𝜆. 𝜆. 0 (nearest binder)

Benefit: No alpha-conversion needed! Names don’t matter.
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The Elaboration Pipeline

From source to kernel:

1. Parsing:
• Source code → Abstract syntax tree
• Handle notation, macros, syntax sugar

2. Elaboration:
• Fill in implicit arguments
• Resolve type class instances
• Compile tactics to proof terms
• Insert coercions

3. Kernel checking:
• Type check elaborated term
• Verify termination
• Ensure soundness
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Section 11

Summary



Week 2 Summary

• Lambda Calculus provides the computational foundation
• Functions are first-class
• Beta reduction for computation
• Church encodings show universality

• Simply Typed Lambda Calculus adds safety
• Type system prevents errors
• Curry-Howard: Types = Propositions

• Dependent Types let types talk about values
• Encode properties in types
• Eliminate runtime checks
• Express precise specifications

• Lean’s Architecture: Trusted kernel + Flexible elaborator
• Small trusted core (De Bruijn criterion)
• Complex features without compromising soundness
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Section 12

Assignments & Next Steps



This Week’s Assignments

Readings (see the course website)
• Theorem Proving in Lean 4 – Chapters 2-3

• The Hitchhiker’s Guide to Logical Verification – Chapters 1-2

• Functional Programming in Lean 4 – Chapter 1

“Hand-in” Assignments (see the course website)
• PROOF101 Quiz 2 (due next time)

• Programming Assignment 2: Lambda Calculus & Type Theory (due next time)
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Questions & Discussion

Questions?

Join our community:
Discord: Link on website
WhatsApp: Link on website

Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu
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