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Section 1

Historical Exposition: How did we get here?
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Subsection 1.1




The Mathematical Lineage (Alonzo Church)

Lambda Calculus (1936)

Alonzo Church developed lambda calculus as a formal system for expressing computation
through function abstraction and application.

Key Ideas:
® Functions as first-class values
® Computation by substitution (5-reduction)
® Everythingis a function (even numbers and booleans!)
® No mutable state, no side effects

Impact:
® Foundation of functional programming languages
® |nfluenced: LISP (1958), ML (1973), Haskell (1990), Lean (2013)
® Proved equivalent to Turing machines (Church-Turing thesis)
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The Mechanical Lineage (Alan Turing)

Turing Machine (1936)

Alan Turing proposed a theoretical machine with an infinite tape, a head that reads/writes, and
state transitions.

Key ldeas:
® Sequential execution of instructions
® Mutable state (tape contents, head position)
® Direct manipulation of memory
® Step-by-step computation

Impact:
® Foundation of imperative programming
Influenced: FORTRAN (1957), C (1972), C++ (1985), Java (1995)
Directly inspired von Neumann architecture
Dominated programming for 70+ years
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The Era of "Spaghetti Code”

The Software Crisis (1960s)
As programs grew larger, they became impossible to understand and maintain.
The Problems:

® GOTO statements created incomprehensible control flow

® Global state meant any function could break anything

® No abstraction - code duplication everywhere

® Projects consistently over budget, late, or failed entirely

Dijkstra’s Response (1968):

Proposed structured programming: loops, conditionals, functions instead of arbitrary jumps.
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The Dream: Smalltalk (1972)
Alan Kay'’s Vision: "Objects All the Way Down”

Pure OOP Principles:
® Everythingis an object (even classes!)
® Objects communicate by sending messages
® Objects encapsulate state and behavior
® |ate binding and polymorphism

The Promise:
® Modularity: compose complex systems from simple objects
® Reusability: objects as building blocks
® Natural modeling: objects <+ real-world entities

“l invented the term Object-Oriented, and I can tell you | did not have C++ in mind.” — Alan Kay
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The Reality: C++ (1985) and Java (1995)

The Corruption of OOP

What went wrong:
® Mutable state everywhere - objects became bags of state
® Deep inheritance hierarchies - fragile base class problem
® Side effects hidden in methods - unpredictable behavior

® Shared mutable state - concurrency nightmares

Joe Armstrong (Erlang creator):
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The Null Pointer (1965)

Tony Hoare's "Billion Dollar Mistake”

The Problem:
® Every reference can be null
® Type system doesn't track which values might be null
® Result: NullPointerException/SEGFAULT

Hoare's Apology (2009):

The Functional Solution: Option/Maybe types - explicitly handle absence!
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The Era of "Concurrency Hell”: The Death of OOP in Systems

The Multicore Revolution (2005+)
CPU speeds stopped increasing. To get faster, we needed more cores.

The Problem with Shared Mutable State:
® Race conditions - two threads modify the same object

Deadlocks - threads wait for each other forever
® Dataraces - unpredictable ordering of operations
® Heisenberg bugs - disappear when you try to debug them

Why Functional Programming Won:
® |mmutability - no shared mutable state = no race conditions
® Pure functions - safe to run in parallel automatically
® Referential transparency - easier to reason about

Result: Erlang, Haskell, Clojure, Scala, Rust, and modern JavaScript all embrace FP.
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Section 2

The Theory of Functional Programming
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What is a Pure Function?

Definition: A function that always returns the same output for the same input and has no

observable side effects.

Two key requirements:

1. Deterministic: Same input > same output (always)

2. Noside effects: Doesn't modify external state or perform 1/0

const xs = [1, 2, 3, 4, 5];

//

XS.
XS.

//

XS .
XS.

PURE: Always returns same result for same input
slice(0, 3); // [1, 2, 3]
slice(0, 3); // [1, 2, 3] (same!)

IMPURE: Mutates array, different results
splice(0, 3); // [1, 2, 3]
splice(0, 3); // [4, 5] (different!)
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Why Purity Matters

Pure functions are: 3. Composable
1. Predictable ® Can combine pure functions safely

® Orderd 't matt th ticall
® Behavior determined entirely by inputs rder doesn’t matter (mathematically)

o Rui . :
® No hidden dependencies on external Build complex behavior from simple

arts
state P
® Easy to understand and reason about
> Testable Purity is the foundation of equational reasoning

in Lean 4.
® No setup or teardown needed

® Just provide input, check output

® No mocking complex dependencies
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Characteristics of Pure Functions
Deterministic behavior:

-- Pure: output determined only by input

def square (n : Nat) : Nat :=n *n
#eval square 5 -- 25
#eval square 5 -- 25 (always the same!)

No side effects:
® Doesn't modify arguments
® Doesn't change global variables
® Doesn't perform 1/0 (print, file, network)
® Doesn't throw exceptions (in FP, we return Result/Option)

Result: Functions become like mathematical functions - predictable, testable, composable!
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Purity and External State
Depending on external state breaks purity:

// IMPURE: Depends on external mutable variable
let minimum = 21;
const checkAge = age => age >= minimum;

checkAge(20); // false

minimum = 18; // Someone changed the global!
checkAge(20); // true (same input, different output!)

Pure version - self-contained:

// PURE: All dependencies explicit
const checkAge = (age, minimum) => age >= minimum;

checkAge (20, 21); // false

checkAge (20, 21); // false (always!)
checkAge (20, 18); // true (different input, so different output is OK)

Key: Make dependencies explicit in parameters!
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What Counts as a Side Effect?

Side effects change the world outside the function:

Modifying a variable outside the function’s scope
Changing the file system (create, delete, modify files)
Writing to a database or making network requests
Printing to screen or writing to logs

Obtaining user input

Modifying the DOM in a web page

Throwing exceptions

Accessing system state (current time, random numbers)

Modifying data structures (arrays, objects) passed as arguments

Key insight: We don't completely forbid side effects, we just want to contain them and control
when they happen!
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The Benefits of Purity: Cacheable (Memoization)
Memoization: "Cache” (store) results of expensive function calls

const memoize = (f) => {
const cache = {};
return (...args) => {
const key = JSON.stringify(args);
if (!(key in cache)) {
cache[key] = f(...args); // Compute once

return cache[key]; // Return cached value
};
+

const expensiveSquare = memoize(x => {
console.log( Computing ${x}?...");
return x * x;

b

expensiveSquare(4); // "Computing 42..." - 16
expensiveSquare(4); // - 16 (from cache, no logging!)

This only works for pure functions! Impure functions can’t be safely cached.
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The Benefits of Purity: Portable & Testable

Impure code hides dependencies:

const signUp = (attrs) => {
const user = saveUser(attrs); // Hidden DB dependency!
welcomeUser(user); // Hidden email service!
}; // IMPURE: Where do saveUser and welcomeUser come from?

Pure code makes dependencies explicit:

const signUp = (db, emailService, attrs) => {
const user = saveUser(db, attrs);
welcomeUser(emailService, user);
return user;

}; // PURE: All dependencies are parameters

Testing benefits:
® No need to set up databases or email services
® Just pass mock objects as parameters (+ no cleanup needed after tests)
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The Benefits of Purity: Reasonable (Equational Reasoning)

Referential transparency: Can replace function call with its value
Example: If f(3) = 9, then:

e f(3) + f(3)equals9 + 9

® 2 * f(3)equals2 * 9

® (Can reason algebraically about code!
Equational reasoning;

® Substitute "equals for equals” (like algebra)

® Refactor with confidence

® Compiler can optimize automatically

® Humans can understand code more easily

Contrast with impure code: Can't replace readFile () with its value, since it might return
different things!
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The Benefits of Purity: Parallel (Automatic Parallelization)

Pure functions are inherently thread-safe:

® No shared mutable state to protect
® No race conditions possible

No need for locks or synchronization
® Canrun in parallel automatically!

Example: Parallel map
*map f [1,2,3,4,5,6,7,8] withpure f
Each f (1) isindependent

® Can compute all in parallel with zero coordination
® Guaranteed to give same result as sequential execution

Critical for modern hardware: Multi-core processors need parallelism! From this point forward,
we strive to write all functions in a pure way.
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Subsection 2.2




What Does "First-Class” Mean?

First-class citizen: A value that can be used anywhere other values can be used
In most languages, numbers are first-class:

® Canstoreinvariables: X = 42

® (an pass to functions: f(42)

® Can return from functions: return 42

® (Canstorein data structures: [42, 43, 44]

First-class functions: Functions can do all of the above!
® Storeinvariables: f = fun x => x + 1
® Pass to functions: map f xs
® Return from functions: return (fun x => x + n)
® Storein data structures: [f1, f2, f3]

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 26/121



Why First-Class Functions Matter

Enables abstraction over computation patterns:

Without first-class functions:

® Write separate loops for each transformation
doublelList, squarelList, incrementlList, ..
® Duplicate loop logic everywhere

® Hard to see the pattern

With first-class functions:
® Write map once
® map double xs,map square xs,map increment Xxs
® Abstract the pattern (transform each element)
® Separate "what” from "how”

This is the foundation of functional programming!
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First-Class Functions in Lean: Storing in Variables

Functions are values - can be stored in variables:

- Store function in a variable
def double : Nat - Nat := fun x => x * 2

- Use it like any other value
#eval double 5 -- 10

-- Can create multiple "copies"
def myDouble := double
def alsoDouble := double

#eval myDouble 3 == @
#eval alsoDouble 3 -- 6

Key insight: doub'le is just a name for a value (that happens to be a function).
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First-Class Functions: Passing to Functions

Functions can take other functions as arguments:

- Takes a function and applies it twice
def twice (f : a » a) (x : a) : a :=

f (f x)
#eval twice (- + 1) 5 --7 (5+1+1)
#eval twice (- * 2) 3 -- 12 (3 %2 %*2)

- Apply function n times
def applyN (f : o » a) : Nat -» o - «
| 0, x => x
| n+l, x => f (applyN f n x)

#eval applyN (- +
*

0 -- 5 (add 1 five times to 0)
#eval applyN (- 1

- 8 (double three times: 1-2-4-8)

Pattern: The function f is just another parameter!
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First-Class Functions: Returning Functions

Functions can return other functions:

-- Returns a function that adds n
def makeAdder (n : Nat) : Nat - Nat :=
fun x => x +n

def add5 := makeAdder 5
def addl0 := makeAdder 10

#eval add5 3 --8 (3 +5)
#eval addlo 3 -- 13 (3 + 10)

-- Returns a function that multiplies by n
def makeMultiplier (n : Nat) : Nat - Nat :=
fun x => x * n

def double :
def triple :

makeMultiplier 2
makeMultiplier 3

#eval double 7 -- 14 (7 * 2)
#eval triple 7 -- 21 (7 * 3)

This is called a "function factory” or "higher-order function”
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First-Class Functions: In Data Structures

Functions can be stored in lists, tuples, etc:

- List of functions
def operations : List (Nat - Nat) :=
[ +1), (« *2), (+* )]

- Apply each function to a value

def applyAll (fs : List (Nat - Nat)) (x : Nat) : List Nat :=
fs.map (fun f => f x)

#eval applyAll operations 5 -- [6, 10, 25]

- Pair of functions

def mathOps : (Nat - Nat - Nat) x (Nat - Nat - Nat) :=
(- + ), (- *0))

#eval mathOps.1 3 4 -- 7 (addition)
#eval mathOps.2 3 4 -- 12 (multiplication)

This enables powerful patterns like strategy pattern without OOP!
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Subsection 2.3




What is a Higher-Order Function?

Definition: A function that either:
® Takes one or more functions as arguments, OR
® Returns a function as its result, OR
® Both!

Examples we've seen:
® twice -takes function, applies it twice
® makeAdder - returns a function
® map - takes function, applies to each element
e filter -takes predicate function

® compose - takes two functions, returns their composition

Why is it so powerful? They abstract over computation patterns!
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Higher-Order Functions: The Power of Abstraction

Without higher-order functions:
® doubleList: Loop through list, double each element
® squarelList: Loop through list, square each element
® incrementList: Loop through list, add 1to each
® Lots of duplicated loop logic!

With map (higher-order function):
® Write loop logic once in map
® map double xs
® map square Xs
® map increment xs

Abstract the pattern: "apply function to each element”

Higher-order functions let us separate "what” from "how”!
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Map: Transform Every Element
Pattern: Apply a transformation to every element

def map (f : a - B) : List a - List B
| [1 => []

| x :: xs == f x :: map f xs

- Examples:
#eval map (- * 2) [1, 2, 3, 4] --[2, 4, 6, 8]
#eval map (- + 1) [1, 2, 3, 4] - [2, 3, 4, 5]

#eval map String.length ["hi", "hello", :'he;/"]’ --[2, 5, 3]

Type: (a » B) - List o » List B
® Takes function from a to B
® Takes list of a

Returns list of B

Each element transformed independently
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Map: Why It Matters

Declarative vs Imperative:

Imperative (how to do it):
® (Create empty result list
® Loop through input list
® For each element, apply function
® Append to result list
® Return result list
Functional (what to do):
® map f xs
® C(lear, concise, declarative
® The "how” is hidden in map

Benefits: Less code, clearer intent, fewer bugs, easier to parallelize!
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Filter: Select Elements

Pattern: Keep only elements that satisfy a condition

def filter (p : o » Bool) : List o - List «a
| 11 =[]
| x :: xs => if p x then x :: filter p xs
else filter p xs

- Examples:
#eval filter (- >5) [1, 8, 3,9, 2, 7] -- [8, 9, 7]

#eval filter (- %2 ==0) [1,2,3,4,5,6] -- [2, 4, 6]

#eval filter (fun s => s.length > 3) ["hi", "hello", "bye"] -- ["hello"]

Type: (¢ » Bool) - List o - List «
® Takes predicate function (returns Bool)

® Returns subset where predicateis true
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Filter: Common Use Cases

Filter is everywhere in real code:

® Data cleaning: Remove null/invalid values

Search: Find items matching criteria
® Validation: Keep only valid inputs
® Filtering API results: Get only what you need

® Permission checks: Show only authorized items

Combines well with map:
® Filter, then transform:map f (filter p xs)
® Transform, then filter: filter p (map f xs)

® Called "method chaining” in some languages
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Fold: Reduce to Single Value

Pattern: Combine all elements using a binary operation

def foldr (f : a - B - B) (init : B) : List a » B
| 11 => init
| x :: xs => f x (foldr f init xs)

- Examples:

#eval foldr (- + -) 0 [1, 2, 3, 4] -- 10 (sum)

#eval foldr (- * -) 1 [1, 2, 3, 4] -- 24 (product)

#eval foldr (- :: -) [] [1, 2, 3] -- [1, 2, 3] (identity)
#eval foldr Nat.max 0 [3, 1, 4, 1, 5] -- 5 (maximum)

Type: (« - B - B) » B -» List a - B
® Combining function:a » B - B
® |nitial/default value: B
® |nputlist: List a
® Single result: B
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Understanding Fold

Fold replaces list constructors:
List structure:
e [1, 2, 3]1=1 :: (2 :: (3 ::11))
® Uses :: (cons)and [] (nil)
Fold replaces constructors:
e foldr f zreplaces :: with fand [] with z
®1 :: (2 :: (3 :: [1))becomesf 1 (f 2 (f 3 z))
Example: Sum
e foldr (+) 0 [1,2,3]
1 :: (2 :: (3 ::[1))>1+ (2+ (3+0))
® Result: 6
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Fold: The Universal List Function

Many list operations are (secretly) just folds!

® sum: foldr (+) 0
® product: foldr (*) 1
® length: foldr (A acc => acc + 1) 0

® reverse: foldl (A acc x => x :: acc) []
® mapf foldr (Ax acc => f x :: acc) []
® filterp: foldr (Ax acc => if p x then x :: acc else acc) []

Fold is incredibly powerful! It's the "mother of all list operations.”
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Fold Right vs Fold Left

Two ways to fold:

- Right fold: processes right to left
def foldr (f : a » B » B) (init : B) : List a » B
| 1 = init
| x :: xs = f x (foldr f init xs)
- Left fold: processes left to right
def foldl (f : B > a » B) (init : B) : List a » B
| 11 => init
| x :: xs => foldl f (f init x) xs

Key difference:
e foldr. f 1 (f 2 (f 3 z)),i.e. right-associative
e fold. f (f (f z 1) 2) 3,i.e. left-associative

® foldlis tail-recursive (more efficient!)
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Fold Right Example: Subtraction

Right fold with subtraction:

1-(2-(3-10))
1-(2-(-7))
1-9

-- foldr (-) 10 [1, 2, 3]
-8

#eval foldr (- - -) 10 [1, 2, 3] -- -8

Execution trace:
1. Process innermost first: 3 - 10 = -7
2. Then:2 - (-7) =9
3. Finally: 1 - 9 = -8

Associates totheright: 1 - (2 - (3 - 10))
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Fold Left Example: Subtraction

Left fold with subtraction:

((10 - 1) - 2) - 3
9 -2) -

7 -3

4

-- foldl (-) 10 [1, 2, 3]
; R

#eval foldl (- - -) 10 [1, 2, 3] -- 4

Execution trace:

1. Start with accumulator: 10

2. Process lefttoright: 10 - 1 = 9

3. Then:9 - 2 =7

4 Finally: 7 - 3 = 4
Associates to the left: ((10 - 1) - 2) - 3
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Summary: When to Use foldr vs foldl?

Use foldr when:
® Operation is naturally right-associative
® Building data structures (cons onto a list)
® Need to preserve order in certain operations
® Working with infinite lists (in lazy languages)
® Example: foldr (::) [] xs =identity
Use foldl when:
® QOperation is naturally left-associative
Need efficiency (tail recursion)
Accumulating a result (sum, product, max)
Building result incrementally
Example: foldl (+) 0 xs =sum (efficient!)

For commutative operations (+,*): Doesn't matter mathematically, but foldl is more efficient!
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Function Composition

Pattern: Chain functions together

def compose (f : B~>vy) (g : a>B) :a-y :=
fun x = f (g x)

notation:90 f " o " g => compose f g

def addOne := (- + 1)

def double := (- * 2)

#eval (addOne o double) 5 o= il (({552) + d)
#eval (double o addOne) 5 -- 12 ((5+1)*2)

Type: (B » y) - (a > B) - (a - Y)
Read: (f o g) (x) means"first apply g then apply f to the result”
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Composition: Building Pipelines

Composition lets you build transformation pipelines:

Without composition:
e f(g(h(x))) -hardtoread (inside-out)
® Have to trace execution backwards
® Parentheses get unwieldy with many functions
With composition:
® (f o g o h)(x) -reads naturally (right-to-left)
Or define: pipeline = f o g o h,thenuse: pipeline(x)

® Can name intermediate transformations

® Reuse composed functions

Composition is associative: (f o g) o h = f o (g o h)
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Composition Example: Data Processing Pipeline

-- Individual transformations

def trim (s : String)

def tolLower (s : String) :

def replaceSpaces (s :
s.replace " " "-*

-- Compose into pipeline
def slugify := replaceSpaces - toLower o trim

#eval slugify " Hello World

-- "hello-world"

-- Can also chain with map
def slugifyAll := map slugify

#eval slugifyAll [" Hello

-~ ["hello", "world"]

Pattern: Build complex transformations from simple, reusable pieces!
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What is Currying?

Currying: Transform function taking multiple arguments into chain of functions each taking
one argument

Transform:
® From: f : (a x B) - Yy (function taking pair)
® To:f : a - B - Yy (function returning function)

® Notation:at » B - y=a - (B - V)

Named after Haskell Curry (mathematician, 1900-1982)
® Though actually invented by Gottlob Frege and Moses Schonfinkel

® Common in logic and functional programming

In Lean: All multi-argument functions are automatically curried!

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 50/121



Why Currying Matters

Currying enables partial application:
Without currying:
® Function needs all arguments at once
® add(3, 4) gives7
® Can't easily create "add 3 to something” function
With currying:
® add : Nat - Nat - Nat
® add 3 : Nat - Nat (partially applied - valid function!)
® add 3 4 : Nat (fully applied - gives result)

® (Can create specialized functions easily

This is fundamental to functional programming style!
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Currying in Action

All these are equivalent:

-- Explicit nested lambdas
def addl : Nat - Nat - Nat :=
fun x => fun y => x +y

- Implicit currying (most common)
def add2 (x : Nat) (y : Nat) : Nat := x + y

- Using operator
def add3 : Nat - Nat - Nat := (- + -)

- All have the same type

#check addl - Nat - Nat - Nat
#check add2 -- Nat - Nat - Nat
#check add3 -- Nat - Nat - Nat

Key insight: Nat - Nat - Nat meansNat - (Nat - Nat)
® Function taking Nat
® Returning function taking Nat
® Which returns Nat
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Partial Application

Partial application: Supply some arguments, get back function waiting for rest

def add (x : Nat) (y : Nat) : Nat := x +y

-- Fully applied (all arguments provided)
#eval add 3 4 -- 7 : Nat

-- Partially applied (one argument provided)
def add3 := add 3
#check add3 -- Nat - Nat (it's a function!)

-- Use the partially applied function
#eval add3 4 --7

#eval add3 10 -- 13
#eval add3 100 -- 103

Pattern: Fix some parameters, get specialized function
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Partial Application: Creating Specialized Functions

-- General multiplication function
def multiply (a : Nat) (b : Nat) : Nat :=a * b

-- Create specialized functions via partial application
def double := multiply 2

def triple := multiply 3

def quadruple := multiply 4

#eval double 7 -- 14

#eval triple 7 -- 21

#eval quadruple 7 -- 28

-- Use with higher-order functions

#eval map double [1, 2, 3, 4] --[2, 4, 6, 8]
#eval map triple [1, 2, 3, 4] -- [3, 6,9, 12]
#eval filter (- > 5) (map double [1, 2, 3, 4, 5])
-- [6, 8, 10]

This is incredibly powerful for code reuse!
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Partial Application: Real-World Examples

Common patterns using partial application:
Configuration functions:
® sendRequest = httpPost apiUrl authToken
® sendRequest data (use configured version)
Validators:
® islongerThan min = (As => s.length > min)
e filter (isLongerThan 5) strings
Comparators:
® isGreaterThan x = (Ay =>y > X)
e filter (isGreaterThan 10) numbers
Pattern: Create families of related functions from one general function!
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Curry and Uncurry: Converting Between Styles

curry: Convert from pairs to curried form

def curry {a By : Type} (f : (a x B) »y) : a »PB >y :=
fun a b => f (a, b)

-- Example: function taking pair
def pairAdd (p : Nat x Nat) : Nat := p.1 + p.2

- Convert to curried form
def curriedAdd := curry pairAdd

#eval pairAdd (3, 4) -7
#eval curriedAdd 3 4 -- 7 (can partial apply now!)
#eval (curry pairAdd) 3 4 -- 7 (inline)

Use case: Work with legacy code or APIs expecting pairs
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Uncurry: Converting Curried to Pairs

uncurry: Convert from curried to pair form

def uncurry {a By : Type} (f : a > B ->y) : (ax xB) -y :=
fun (a, b) = f a b

- Example: curried function
def add (a b : Nat) : Nat :=a + b

- Convert to pair form
def pairAdd := uncurry add

#eval add 3 4 --7
#eval pairAdd (3, 4) 7
#eval uncurry add (3, 4) -- 7 (inline)

Use case: When you have pairs of data and want to apply curried function

Note: uncurry (curry f) = fandcurry (uncurry g) = g(isomorphism!)
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Flip: Reverse Argument Order

flip: Swap the order of the first two arguments

def flip {a By : Type} (f : a - B-y) : B>a-y :=
funba=>fab

-- Example: subtraction (order matters!)

def sub (a b : Nat) : Int := (a : Int) - (b : Int)
#eval sub 10 3 -- 7 (10 - 3)
#eval flip sub 10 3 -- -7 (3 - 10, flipped!)

-- Useful for partial application
def subtractFroml0 := flip sub 10
#eval subtractFroml0 3 -- 7 (10 - 3)
#eval subtractFroml® 5 -- 5 (10 - 5)

Use case: Make partial application more convenient!
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Flip: Why It's Useful

Problem: Sometimes argument order is inconvenient

Example: append

® append XS ys appendsys to xs

® Want: appendToXs = append Xxs (partially applied)

® But often we want to append to a fixed list!

® Solution: prependToYs = flip append ys
Example: division

® div a bcomputesa / b

® Want: "divide something by 2"

® divideBy2 = flip div 2

® Now: divideBy2 10 = 5

Pattern: Flip lets you partially apply the "wrong” argument!
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Const: The Constant Function

const: Returns function that always returns same value

def const {a¢ B : Type} (a : a) : B - a :=
fun _ =>a

- Ignores its argument, always returns a

#eval (const 42) "hello" -- 42
#eval (const true) 100 -- true
#eval (const "x") [1, 2, 3] - X"

Type:a - B - a
® Takes value of type «
® Returns functionB - a
® That function ignores its argument

® Always returns the original a value
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Const: Use Cases

Replace all elementsin a list:

#eval map (const 0) [1, 2, 3, 4] -- [0, 0, 0, 0]
#eval map (const "x") [1, 2, 3] S [UxM, X, Xt

-- Create a function that replaces with a value
def replaceWith (value : a) : List B - List a :=
map (const value)

#eval replacewith 7 ["a", "b", "c"] -- [7, 7, 7]

Provide default values:

-- When you need a function but want constant output
def alwaysValid : String - Bool := const true
def alwaysFalse : Nat - Bool := const false

#eval filter alwaysvalid ["a", "b"] -- ["a", "b"]
#eval filter alwaysFalse [1, 2, 3] -- ]
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Section 2

Subsection 2.5




Inductive Types: The Foundation

Recall from Week 2: Inductive types are the core building block in Lean

Key properties:
® Nojunk: Only values from constructors exist
® No confusion: Different constructors # different values

® Structural induction: Pattern match = proof by cases

Why important for functional programming:
® Exhaustive pattern matching (compiler checks!)
® Structural recursion (guaranteed termination)
® Type-safe by construction

® Compose data structures safely

Today: We'll see how these enable powerful functional patterns

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 63/121



Enumerated Types (Refresher)

Simplest inductive type: Finite list of elements

inductive Weekday where
| sunday | monday | tuesday | wednesday
| thursday | friday | saturday
deriving Repr, BEq

-- Pattern match to define functions

def numberOfDay : Weekday - Nat
| .sunday = 1
| .monday = 2
| .tuesday => 3
| .wednesday => 4
| .thursday => 5
| .friday =6
| .saturday => 7

def isWeekend : Weekday - Bool
| .saturday => true
| .sunday => true
| => false -- catch-all pattern
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Pattern Matching: Exhaustiveness Checking

Lean requires exhaustive patterns:

Without catch-all:
® Must handle every constructor
® Compiler checks you haven't missed any

® Prevents bugs from unhandled cases

With catch-all (_):
® Handles "all other cases”
® Useful when most cases have same behavior

® But be careful - might hide bugs if you add constructors later!
Best practice: Be explicit when possible, use catch-all when justified
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The "No Junk, No Confusion” Principle
No Junk: Only constructor-built values exist

-- For Weekday: only these 7 values exist
-- No "undefined", no "null", no special error values
def allWeekdays : List Weekday :=

[.sunday, .monday, .tuesday, .wednesday,

.thursday, .friday, .saturday]

No Confusion: Different constructors build different values

-- Lean knows these are different

theorem monday ne tuesday : Weekday.monday = Weekday.tuesday := by
intro h

cases h -- Contradiction! Different constructors
-- Can use in proofs and programs

def isSameDay (dl d2 : Weekday) : Bool :=
1 == d2 -- Uses BEq derived from "no confusion"
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Example: Color Mixing

inductive Color where
| Red | Green | Blue
deriving Repr, BEq

-- Complex pattern matching
def mixColors : Color - Color - Color
| .Red, .Blue => .Green
| .Blue, .Red => .Green
| .Red, .Green => .Blue
| .Green, .Red => .Blue
| .Blue, .Green => .Red
| .Green, .Blue => .Red
|

c, _=>c -- Same color or mixing with itself
#eval mixColors .Red .Blue -- Color.Green
#eval mixColors .Red .Red -- Color.Red
#eval mixColors .Green .Blue -- Color.Red

Pattern: Define behavior explicitly for each case combination
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Structures: Product Types

Structures: Group related values with named fields

structure Point where
x : Float
y : Float
deriving Repr

- Create values
def origin : Point := {
def p : Point := { x :=

- Access fields
#eval origin.x -- 0.0
#eval p.y - 4.0
- Pattern match on structure
def isOrigin : Point - Bool
| { x :=0.0, y :=0.0 } => true
| _ => false

Key: Structures are immutable - can’t modify fields!
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Operations on Structures

structure Point where
x : Float
y : Float
deriving Repr

def addPoints (p q : Point) : Point :=
{Xx =p.x+09.Xx, y :=p.y +q.y }

def scalePoint (k : Float) (p : Point) : Point :=
{x:=k*px, y:=k*p.y}

def distance (p q : Point) : Float :=
Float.sqrt ((p.x - 9.x)"2 + (p.y - q.y)"2)

#eval addPoints { x := 1.0, y :=2.0 } { x :=3.0, y := 4.0}
- {x :=4.0, y :=6.0}

#eval scalePoint 2.0 { x := 3.0, y := 4.0 }
-- {x :=6.0, y :=8.0}

Pattern: Pure functions on immutable datal!
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Functional Update Syntax

Create new struct with some fields changed:

structure Point where
x : Float
y : Float
deriving Repr

def p : Point := { x := 1.0, y := 2.0 }

-- Functional update: {struct with field :=

def moveRight (p : Point) (dx : Float) : Point

{ p with x := p.x + dx }

def moveUp (p : Point) (dy : Float) : Point :

{ pwithy :=p.y +dy}

#eval moveRight p 3.0 == {
#eval moveUp p 5.0 -- {

nn
~ N
oo

<<
W

-- Update multiple fields

NN

def move (p : Point) (dx dy : Float) : Point :

{ p with x := p.x + dx, y = p.y + dy }

Key: Original struct p is unchanged!
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Why Immutability Matters

Immutable data structures:
Benefits:
® No accidental modifications
Safe to share between threads
Can reason about code locally
History is preserved (time-travel debugging!)
Easier to test (no hidden state changes)

Cost:
® Must copy data for updates
® More memory usage (but structural sharing helps!)
® Different mindset from imperative programming
Tradeoff: Safety and clarity vs performance
® For most programs: Safety wins!

® For critical paths: Can use mutable structures carefully
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Sum Types: "This OR That”

Sum types: Value is one type OR another

inductive Sum (o : Type) (B : Type) where
| inl : o > Sum a B -- "in left" - value of type a
| inr : B - Sum a B -- "in right" - value of type B

-- Example: String or Int
def valuel : Sum String Int
def value2 : Sum String Int :

Sum.inl "hello"
Sum.inr 42

-- Must pattern match to use

def showSum : Sum String Int - String
| Sum.inl s => s!"Got string: {s}"
| Sum.inr n => s!"Got int: {n}"

#eval showSum valuel -- "Got string: hello"
#eval showSum value2 -- "Got int: 42"

Type system forces you to handle both cases!
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Sum Types: Modeling Alternatives

Sum types model "either/or” situations:
Use cases:

® Resulttype: Sum Error Success

® Parsing: Sum ParseError AST

® Userinput: Sum Cancel Submit

® Multiple formats: Sum JSON XML

® Error handling: Sum Exception Value
Contrast with OOP:

® 0O0P: Inheritance hierarchy (fragile, implicit)

® FP:Sum types (explicit, exhaustive, safe)

Compiler ensures you handle all alternatives!
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Option Types: The "Billion Dollar Fix"”

Option type: Explicit absence of value

inductive Option (a : Type) where
| none : Option a -- No value present
| some : o - Option a -- Value present

-- Safe list head
def head? {a : Type} : List a - Option a

| 11 => none

| x :: _ => some X
#eval head? [1, 2, 3] -- some 1
#eval head? ([] : List Nat) -- none

-- Type forces you to handle both cases!

def process (xs : List Nat) : Nat :=
match head? xs with
| none =>20 -- Must handle empty case
| some x => x + 1 -- Only here do we have value

No NullPointerException possible!
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Working with Option

-- Get value or default

def getOrDefault {a : Type} (opt

match opt with
| none => default
| some x => x

#eval getOrDefault (some 42) 0

#eval getOrDefault none 0

-- Map over Option

def mapOption {a B : Type} (f
| none => none
| some x => some (f x)

#eval mapOption (- + 1) (some 5)

#eval mapOption (- + 1) none

-- Chain operations

def andThen {a B : Type} (opt
match opt with
| none => none
| some x => f x

PROOF101 Week 3 Functional Programming
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Option: Why It's Better Than Null

Problem with null:
® String s = maybeGetUser() -is s null?
® Type doesn't say - must check at runtime
® Forgetto check > NullPointerException
® (Costs billions in bugs and crashes

Solution with Option:
® Option Stringvs String - different types!
® Type tells you "might be absent”
® Can't use value without checking

Forget to check » compile error (safe!)
® Null pointer errors literally impossible

This is "Tony Hoare's billion dollar fix"!
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Recursive Types: Natural Numbers

Inductive types can be recursive:

inductive Nat where
| zero : Nat -- Base case
| succ : Nat - Nat -- Recursive case

-- Representation:

zero

succ zero

succ (succ zero)

succ (succ (succ zero))

WN RO

def add : Nat - Nat - Nat
| n, Nat.zero =>n
| n, Nat.succ m => Nat.succ (add n m)

#eval add 23 -- 5

Pattern: Define operations by structural recursion
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Recursive Types: Lists

inductive List (a : Type) where
| nil : List a
| cons : o - List o - List o

-- Sugar: [1, 2, 3] = cons 1 (cons 2 (cons 3 nil))
def length {a : Type} : List a - Nat
| 1 = 0

| _ :: xs = 1+ length xs

def append {a : Type} : List a - List o - List «a

| 1, ys =>ys
| x :: xs, ys => x :: append Xs ys
#eval length [1, 2, 3, 4] == 4
#eval append [1, 2] [3, 4, 5] -- [1, 2, 3, 4, 5]

Pattern: Base case (nil) + recursive case (cons)
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Polymorphism in Inductive Types

Type parameters make structures generic:

® [ist o worksforanytypea
® Option ocanwrap any type
® Sum a B combinesany two types
® BTree «storesany typein nodes

Examples:
® [ ist Nat - list of numbers
® List String - list of strings
e [ist (List Nat) - list of lists
Option (List Nat) - maybealist
® Sum String (List Nat) - stringor list

Write once, use for all types!
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Deriving Instances

Auto-generate useful functionality:

inductive Weekday where
| sunday | monday | tuesday | wednesday
| thursday | friday | saturday
deriving Repr, BEq, Ord, Inhabited

-- Repr: String representation
#eval Weekday.monday -- Weekday.monday

-- BEq: Boolean equality
#eval Weekday.monday == Weekday.tuesday -- false

-- 0Ord: Ordering (for sorting)
#eval compare Weekday.monday Weekday.friday
-- Ordering.lt

-- Inhabited: Default value
#eval (default : Weekday) -- Weekday.sunday

Lean generates implementations automatically!
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Section 2

Subsection 2.6




ZipWith: Combine Two Lists

Pattern: Combine corresponding elements from two lists

def zipwWith {a B y : Type} (f : a - B > vy) :
List a -» List B - List y
| 11, _=>1]
|

o [ =11
| x :: xs, y :: ys = f xy :: zipWwith f xs ys

#eval zipWith (- + -) [1, 2, 3] [4, 5, 6]
- [5, 7, 9] (1+4, 2+5, 3+6)

#eval zipWith (- * -) [2, 3, 4] [5, 6, 7]
- [10, 18, 28] (2*5, 3*6, 4*7)

#eval zipwith (-, -) [1, 2, 3] ["a", "b", "c"]
- [(1, "a"), (2, "b"), (3, "c")]

Stops at shorter list!
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ZipWith: Use Cases

Common applications:
Vector operations:
® Addvectors: zipWith (+) vl v2
® Dot product: sum (zipWith (*) v1 v2)
Data alignment:
® Merge two datasets: zipWith combine datal data2
® Pair IDs with values: zipWith (,) ids values
Comparisons:
® Element-wise comparison: zipWith (==) expected actual
® Find differences: filter (not o uncurry (==)) (zipWith (,) xs ys)

Pattern: Operate on aligned data from multiple sources
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DropWhile: Skip Elements

Pattern: Remove from front while predicate holds

def dropwhile {a : Type} (p : a - Bool) : List a - List a
| [1=>1]
| x :: xs => if p x then dropWhile p xs
else x :: xs

#eval dropwhile (- < 5) [1, 2, 3, 6, 4, 7]
-- [6, 4, 7] (stopped at 6)

#eval dropWhile (- % 2 ==0) [2, 4, 6, 1, 8]
-- [1, 8] (stopped at 1)

#eval dropwhile (- < 10) [1, 2, 3, 4]
-- [] (all dropped)

#eval dropWhile (- > 10) [1, 2, 3, 4]
-- [1, 2, 3, 4] (nothing dropped)

Key: Stops at first element where predicate is false!
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DropWhile: Complementary Functions

Related functions:

-- takeWhile: opposite of dropWhile
def takeWhile {a : Type} (p : a - Bool) : List a - List a
| [1 =11
| x :: xs => if p x then x :: takeWhile p xs
else []

#eval takeWhile (- < 5) [1, 2, 3, 6, 4, 7]
-- [1, 2, 3] (before first = 5)

-- drop: drop exactly n elements

def drop {a : Type} : Nat - List o - List a
| 0, xs => xs
| ., 1 =11
| n+l, _ :: xs => drop n xs

#eval drop 2 [1, 2, 3, 4, 5]
-- [3, 4, 5]

Pattern: Different ways to remove elements from front
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Partition: Split by Predicate

Pattern: Split into (matching, non-matching) groups

def partition {a : Type} (p : a - Bool) :
List a » (List a x List a)
| 1= (11, [1)
| x :: xs =>
let (matches, others) := partition p xs
if p x then (x :: matches, others)
else (matches, x :: others)

#eval partition (- % 2 == 0) [1, 2, 3, 4, 5, 6]
- ([2, 4, 6], [1, 3, 5])

#eval partition (- > 5) [1, 8, 3, 9, 2, 7]
== (1 O, 7i, UL, &, 21)

Property: Concatenating results gives original list (order preserved!)
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Partition: Applications

Use cases:
Quicksort:
® Partition around pivot
e partition (< pivot) xs
® Recursively sort both partitions
Data filtering:
® Separate valid from invalid
® Process each group differently
® Keep both groups for analysis
User selection:
® Selected vs unselected items
® Process selected items
® Keep unselected for later

oobattern: One pass through list, two outputs!
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Interleave: Merge Alternating

Pattern: Alternate elements from two lists

def interleave {a : Type} : List o - List a - List a
| [1, ys => -- Base case: first list empty
| xs, [1 => -- Base case: second list empty
| x :: xs, y :: ys => -- Recursive: take from each, recurse

#eval interleave [1,3,5] [2,4,6]
--[1, 2, 3, 4, 5, 6]

#eval interleave [1,2] [10,20,30,40]
-- [1, 10, 2, 20, 30, 40]

#eval interleave ["a", "b"] ["x", "y", "z"]
- ["a", "x", "b", "y", "z"]

Use case: Merge two sorted sequences while preserving order
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SplitAt: Split at Index

Pattern: Split list at given position

def splitAt {a : Type} : Nat - List a - (List o x List a)
| ©, xs => -- Base case: split at 0
| _, [1 => -- Base case: empty list
| n+l, x :: xs => -- Recursive case: split tail, add x to left part

#eval splitAt 2 [1,2,3,4,5]
-- ([1, 2], [3, 4, 5])

#eval splitAt 0 [1,2,3]
oo ([, W5, Z, 3I)

#eval splitAt 10 [1,2,3]
== (5, 2, 3, i)

Property: append (splitAt n xs).1 (splitAt n xs).2 = xs
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Findindex: Locate Element

Pattern: Find position of first match

def findIndexHelper {a : Type} (p : o - Bool) :
Nat - List o - Option Nat
| _, [1 => none
| n, x :: xs =>
if p x then some n
else findIndexHelper p (n+1) xs

def findIndex {a : Type} (p : a - Bool) : List o - Option Nat :=
findIndexHelper p 0

#eval findIndex (- > 5) [1, 3, 6, 2, 8]
-- some 2 (found 6 at index 2)

#eval findIndex (- > 10) [1, 3, 6, 2, 8]
-- none (not found)

Helper pattern: Track index with accumulator!
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FindIndex: Why Option?

Why return Option Nat?
Problem: Element might not exist

® Can'treturn -1 (notaNat)

® Can't return special "not found” value

® Could throw exception (but not FP style!)
Solution: Option Nat

® some nwhenfound atindexn

® none when not found

® Type system forces caller to handle both cases

No special values, no exceptions!

This is the FP way!

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 91/121



GroupConsecutive: Group Adjacent Equals

Pattern: Group consecutive equal elements

def groupConsecutive {a : Type} [BEq a] :
| [1 => -- Base case: empty list
| x :: xs =>
match xs with
| [1 => -- Single element: group of one
| y iiys =>
if x ==y then -- x equals y: add x to first group from recursion
else -- x differs from y: start new group with x
-- Algorithm: Compare adjacent elements, build groups

List a - List (List «)
#eval groupConsecutive [1,1,2,2,2,3,3]
--[[1,1], [2,2,2], [3,3]]

Algorithm: Build groups by checking adjacent elements
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Section 3

Binary Trees (Deep Dive)




Binary Trees: Definition

Recall: Recursive structure with at most two children

inductive BTree (a : Type) : Type where
| empty : BTree a
| node : a - BTree a -» BTree o - BTree a
deriving Repr

-- Example tree:

def exampleTree : BTree Nat :=
BTree.node 5
(BTree.node 3
(BTree.node 1 BTree.empty BTree.empty)
BTree.empty)
(BTree.node 7 BTree.empty BTree.empty)
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Tree Size: Count All Nodes

def size {a : Type} : BTree a - Nat
| BTree.empty => 0
| BTree.node = 1 r => 1 + size 1 + size r

def treel : BTree Nat :=
BTree.node 1 BTree.empty BTree.empty

def tree2 : BTree Nat :=
BTree.node 2 treel treel

#eval size (BTree.empty : BTree Nat) -- 0
#eval size treel -- 1
3

#eval size tree2 -- (root + 2 children)

Pattern: 1 (current node) + size of left + size of right

Time complexity: O(n) - visits every node once
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Tree Mirror: Swap Subtrees

def mirror {a : Type} : BTree a - BTree «a
| BTree.empty => BTree.empty
| BTree.node a 1 r => BTree.node a (mirror r) (mirror 1)

-- Original: Mirror:
- 5 5
/\ /|

3 7 7 3
/ |

1 1

#eval mirror exampleTree

Property: mirror (mirror t) = t (involutive!)

Use case: Horizontal flip, RTL vs LTR display
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Tree Height: Maximum Depth

def height {a : Type} : BTree a - Nat
| BTree.empty => 0
| BTree.node _ 1 r => 1 + Nat.max (height 1) (height r)

#eval height (BTree.empty : BTree Nat) -- 0
#eval height treel -- 1
#eval height tree2 -- 2

-- Unbalanced tree (worst case):

def unbalanced : BTree Nat :=
BTree.node 1 BTree.empty
(BTree.node 2 BTree.empty
(BTree.node 3 BTree.empty BTree.empty))

#eval height unbalanced -- 3

Height affects performance of search operations!
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Tree Height: Balanced vs Unbalanced

Height matters for performance:

Balanced tree (height ~ log n):
® Height grows slowly with number of nodes
® Search, insert, delete: O(log n)
® Example: 1000 nodes - height 10
Unbalanced tree (height &~ n):
® Height can equal number of nodes
® Degrades to linked list
® Search, insert, delete: O(n)
® Example: 1000 nodes - height 1000
Self-balancing trees (AVL, Red-Black) maintain O(log n) height!
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MapTree: Transform Values

def mapTree {a B : Type} (f : a - B) : BTree a - BTree B
BTree.empty => BTree.empty
BTree.node a 1 r =>

BTree.node (f a) (mapTree f 1) (mapTree f r)

#eval mapTree (- + 1) treel
-- node 2 empty empty

#eval mapTree (- * 2) tree2
-- node 4 (node 2 empty empty) (node 2 empty empty)

#eval mapTree toString exampleTree
Converts all values to strings

Like map for lists, but for trees!

Preserves structure, transforms values
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CountLeaves: Nodes Without Children

Leaf node: No children (both empty)

def countLeaves {a : Type} : BTree a - Nat

BTree.empty => 0

BTree.node _ BTree.empty BTree.empty => 1 -- Leaf!
BTree.node _ 1 r => countLeaves 1 + countLeaves r

def leaf : BTree Nat :=
BTree.node 1 BTree.empty BTree.empty

def branch : BTree Nat :=
BTree.node 2 leaf leaf

#eval countlLeaves (BTree.empty : BTree Nat) -- 0
#eval countlLeaves leaf -- 1
#eval countleaves branch -- 2

2

#eval countlLeaves exampleTree = (nodes 1 and 7)

Pattern: Special case for leaves, recurse otherwise
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Contains: Search for Value

def contains {a :
BTree.empty => false
BTree.node a 1 r =>

a

#eval
#eval
#eval
#eval
#eval
#eval

Type} [BEq o] (x : a) : BTree a - Bool

== x || contains x 1 || contains x r
contains 1 leaf - true

contains 5 leaf -- false

contains 2 branch - true

contains 1 branch -- true (in children)
contains 7 exampleTree -- true

contains 4 exampleTree -- false

Time complexity: 0(n) worst case (must check all nodes)

Better: Binary search tree can do O(log n)!
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MaxElement: Find Maximum

def maxElement {a : Type} [Ord o] [Max a] : BTree a - Option a
| BTree.empty => none
| BTree.node a 1 r =>
let maxL := maxElement
let maxR maxElement
match maxL, maxR with
none, none => some a
some X, none => some (max a x)
none, some y => some (max a y)
some X, some y => some (max a (max X y))

=

B

#eval maxElement (BTree.empty : BTree Nat) -- none

#eval maxElement leaf -- some 1
#eval maxElement branch -- some 2
#eval maxElement exampleTree -- some 7

Pattern: Compare node with max of both subtrees
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Inorder Traversal

Order: Left subtree > Root > Right subtree

def inorder {a : Type} : BTree a - List «
| BTree.empty => []
| BTree.node a 1 r => inorder 1 ++ [a] ++ inorder r

-- Tree:

- 2

o= /|

-- 1 3

def orderedTree : BTree Nat :=

BTree.node 2

(BTree.node 1 BTree.empty BTree.empty)
(BTree.node 3 BTree.empty BTree.empty)

#eval inorder orderedTree -- [1, 2, 3]
#eval inorder exampleTree -- [1, 3, 5, 7]

Property: For binary search tree, returns sorted list!
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Tree Traversals: The Three Orders

Three main traversal orders:
Inorder (left-root-right):
® For BST: gives sorted sequence
® Used for: printing sorted values
Preorder (root-left-right):
® Process node before children
® Used for: copying tree, expression evaluation
Postorder (left-right-root):
® Process node after children

® Used for: deleting tree, postfix expressions

Different orders for different use cases!
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Level-Order Traversal (Breadth-First)

Process nodes level by level:

def levelOrderHelper {a : Type} :
Nat - List (BTree a) - List (List a)
|6, =11
| _, [1 =11
| fuel+l, trees =>
let values := trees.filterMap (fun t =>
match t with
| BTree.empty => none
| BTree.node a _ _ => some a)
if values.isEmpty then []
else
let children := trees.flatMap (fun t =>
match t with
| BTree.empty => []
| BTree.node 1r=>[1, r])

values :: levelOrderHelper fuel children

def levelOrder {a : Type} (t : BTree a) : List (List a) :=
levelOrderHelper 100 [t]
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Level-Order: Example

#eval levelOrder exampleTree
- [[51, [3, 71, [1]]

- Each inner list is one level!

Use cases:

® Finding shortest path in tree

® |evel-wise processing

® Pretty printing trees

® Serialization preserving structure
Pattern: Queue of nodes to process (BFS!)
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Section 4

Pattern Matching (Deep Dive)




Pattern Matching Expressions

Syntax: match [theterm]with | pattern => result

-- Count elements satisfying predicate
def count {a : Type} (p : a - Bool) : List a - Nat
| 11 => 0
| x :: xs =>
match p x with
| true => 1 + count p xs
| false => count p xs

#eval count (- >5) [1, 8, 3, 9,2, 7] --3

-- Multiple patterns

def describe (n : Nat) : String :=
match n with
| 6 => "zero"
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Pattern Matching on Structures

structure Point where
x : Float
y : Float

def isOrigin : Point - Bool
| {x := 0.0, y := 0.0} => true

| _ => false
#eval isOrigin {x := 0.0, y := 0.0} -- true
#eval isOrigin {x := 1.0, y := 0.0} -- false

-- Extract components
def describe : Point - String
| {x :=0.0, y := 0.0} => "origin"

=X, y =y} =>sl"at ({x}, {yhH"

#eval describe {x := 3.0, y := 0.0}
-- "on x-axis at 3.000000"

PROOF101 Week 3 Functional Programming

X, y = 0.0} => s!"on x-axis at {x}"
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Nested Pattern Matching

-- Pattern match on multiple structures
def comparePoints : Point - Point - String
| {x :=x1, y := yl}, {x := x2, y := y2} =>
if x1 == x2 & yl == y2 then "equal"
else if x1 == x2 then "same X"
else if yl == y2 then "same y"
else "different"

-- Match on Option in List
def getFirst {a : Type} : List (Option a) - Option a

| [1 => none
| none :: xs => getFirst xs
| some x :: _ => some X
#eval getFirst [none, none, some 42, some 7] -- some 42

Pattern: Destructure nested data in one step!
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Section 5

Mathematical Induction




Structural Induction on Lists

Principle: To prove P[xs] for all lists, prove:
1. Base case: P[[]]
2. Inductive step: Vx zs, Plxrs] = Plz :: xs]

Why it works:
® Alllists built from [] and : :
® Base case handles empty list
® |nductive step handles cons

® Together: covers all lists!

This is pattern matching on steroids!
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Example: Reverse is Involutive

Theorem: reverse (reverse Xxs) = XS

theorem reverse reverse {a : Type} (xs : List a) :

reverse (reverse xs) = xs := by
induction xs with
| nil =>

rfl -- Base: reverse [] =[]

| cons x xs ih =>
-- Inductive: assume reverse (reverse xs) = XS
-- Show: reverse (reverse (x :: XS)) = X :: XS
simp [reverse]
rw [ih] -- Use induction hypothesis

-- This proof works because lists are inductive!

Pattern: Prove base case, use IH in inductive case

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 13/121



Structural Induction on Trees

Principle: To prove P[t] for all trees, prove:
1. Base case: P[empty]

2. Inductivestep: Valr, P[l| = P[r] = P[nodealr]

Why it works:
® All trees built from empty and node
® Base case handles empty
® |nductive step: assume true for subtrees

® Prove true for node with those subtrees

Two induction hypotheses (one per subtree)!
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Example: Mirror is Involutive

Theorem: mirror (mirror t) =t

theorem mirror mirror {a : Type} (t : BTree a)

mirror (mirror t) =t := by
induction t with
| empty =>
rfl -- Base: mirror empty = empty

| node al r ih 1 ih r =>
-- Inductive: assume mirror (mirror 1) =1
-- and mirror (mirror r) = r
-- Show: mirror (mirror (node a l r)) =
simp [mirror]
rw [ih_1, ih_r] -- Use both IHs!

node a 1 r

-- Two IHs because two recursive calls in definition!
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Section 6

Summary




What We've Learned

Functional Programming Core:
® Pure functions: deterministic, no side effects
® First-class functions: pass, return, store
® Higher-order functions: map, filter, fold, compose
® Currying and partial application
Data Structures:
® |nductive types: no junk, no confusion
® Structures: immutable records
® Sum types and Option: explicit alternatives
® |istsand trees: recursive structures

Techniques:
® Pattern matching: exhaustive, safe
® Structural recursion: guaranteed termination

® Mathematical induction: prove correctness
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Section 7

Assignments & Next Steps




This Week’s Assignments

Readings (see the course website)

® Theorem Proving in Lean 4 (Chapter 4)
® Functional Programming in Lean 4 (Chapters 1-2-3 + Interlude 1)
® The Hitchhiker's Guide to Logical Verification (Chapter 5)

PROOF101 Quiz 3 (due next time)

® Programming Assignment 3: Functional Programming (due next time)

Assignment covers: All concepts from today + Week 2 inductive types
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Questions & Discussion

Questions?

Join our community:
Discord: https://discord.gg/ZNGE8Xgd
Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu
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“O0P makes code understandable by
encapsulating moving parts. FP does
so by minimizing moving parts.”
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