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TheMathematical Lineage (Alonzo Church)

Lambda Calculus (1936)

Alonzo Church developed lambda calculus as a formal system for expressing computation
through function abstraction and application.

Key Ideas:
• Functions as first-class values
• Computation by substitution (𝛽-reduction)
• Everything is a function (even numbers and booleans!)
• Nomutable state, no side effects

Impact:
• Foundation of functional programming languages
• Influenced: LISP (1958), ML (1973), Haskell (1990), Lean (2013)
• Proved equivalent to Turing machines (Church-Turing thesis)
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TheMechanical Lineage (Alan Turing)

Turing Machine (1936)

Alan Turing proposed a theoretical machine with an infinite tape, a head that reads/writes, and
state transitions.

Key Ideas:
• Sequential execution of instructions
• Mutable state (tape contents, head position)
• Direct manipulation of memory
• Step-by-step computation

Impact:
• Foundation of imperative programming
• Influenced: FORTRAN (1957), C (1972), C++ (1985), Java (1995)
• Directly inspired von Neumann architecture
• Dominated programming for 70+ years
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The Era of ”Spaghetti Code”

The Software Crisis (1960s)

As programs grew larger, they became impossible to understand and maintain.

The Problems:

• GOTO statements created incomprehensible control flow

• Global statemeant any function could break anything

• No abstraction - code duplication everywhere

• Projects consistently over budget, late, or failed entirely

Dijkstra’s Response (1968):
“Go To Statement Considered Harmful”

Proposed structured programming: loops, conditionals, functions instead of arbitrary jumps.
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The Dream: Smalltalk (1972)

Alan Kay’s Vision: ”Objects All theWay Down”

Pure OOP Principles:
• Everything is an object (even classes!)
• Objects communicate by sending messages
• Objects encapsulate state and behavior
• Late binding and polymorphism

The Promise:
• Modularity: compose complex systems from simple objects
• Reusability: objects as building blocks
• Natural modeling: objects↔ real-world entities

“I invented the term Object-Oriented, and I can tell you I did not have C++ in mind.” — Alan Kay
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The Reality: C++ (1985) and Java (1995)

The Corruption of OOP

What went wrong:

• Mutable state everywhere - objects became bags of state

• Deep inheritance hierarchies - fragile base class problem

• Side effects hidden inmethods - unpredictable behavior

• Sharedmutable state - concurrency nightmares

Joe Armstrong (Erlang creator):
“The problem with object-oriented languages is they’ve got all this implicit environ-
ment that they carry around with them. You wanted a banana but what you got was
a gorilla holding the banana... and the entire jungle.”
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The Null Pointer (1965)

Tony Hoare’s ”Billion Dollar Mistake”

The Problem:

• Every reference can be null

• Type system doesn’t track which values might be null

• Result: NullPointerException / SEGFAULT

Hoare’s Apology (2009):
“I call it my billion-dollar mistake. It was the invention of the null reference in 1965...
This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years.”

The Functional Solution: Option/Maybe types - explicitly handle absence!
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The Era of ”Concurrency Hell”: The Death of OOP in Systems

TheMulticore Revolution (2005+)
CPU speeds stopped increasing. To get faster, we neededmore cores.

The Problemwith SharedMutable State:
• Race conditions - two threads modify the same object
• Deadlocks - threads wait for each other forever
• Data races - unpredictable ordering of operations
• Heisenberg bugs - disappear when you try to debug them

Why Functional ProgrammingWon:
• Immutability - no shared mutable state = no race conditions
• Pure functions - safe to run in parallel automatically
• Referential transparency - easier to reason about

Result: Erlang, Haskell, Clojure, Scala, Rust, and modern JavaScript all embrace FP.
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What is a Pure Function?

Definition: A function that always returns the same output for the same input and has no
observable side effects.

Two key requirements:

1. Deterministic: Same input → same output (always)

2. No side effects: Doesn’t modify external state or perform I/O

const xs = [1, 2, 3, 4, 5];

// PURE: Always returns same result for same input

xs.slice(0, 3); // [1, 2, 3]

xs.slice(0, 3); // [1, 2, 3] (same!)

// IMPURE: Mutates array, different results

xs.splice(0, 3); // [1, 2, 3]

xs.splice(0, 3); // [4, 5] (different!)
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Why Purity Matters

Pure functions are:

1. Predictable

• Behavior determined entirely by inputs

• No hidden dependencies on external
state

• Easy to understand and reason about

2. Testable

• No setup or teardown needed

• Just provide input, check output

• Nomocking complex dependencies

3. Composable

• Can combine pure functions safely

• Order doesn’t matter (mathematically)

• Build complex behavior from simple
parts

Purity is the foundation of equational reasoning
in Lean 4.
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Characteristics of Pure Functions

Deterministic behavior:

-- Pure: output determined only by input

def square (n : Nat) : Nat := n * n

#eval square 5 -- 25

#eval square 5 -- 25 (always the same!)

No side effects:

• Doesn’t modify arguments

• Doesn’t change global variables

• Doesn’t perform I/O (print, file, network)

• Doesn’t throw exceptions (in FP, we return Result/Option)

Result: Functions become like mathematical functions - predictable, testable, composable!
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Purity and External State

Depending on external state breaks purity:

// IMPURE: Depends on external mutable variable

let minimum = 21;

const checkAge = age => age >= minimum;

checkAge(20); // false

minimum = 18; // Someone changed the global!

checkAge(20); // true (same input, different output!)

Pure version - self-contained:

// PURE: All dependencies explicit

const checkAge = (age, minimum) => age >= minimum;

checkAge(20, 21); // false

checkAge(20, 21); // false (always!)

checkAge(20, 18); // true (different input, so different output is OK)

Key: Make dependencies explicit in parameters!
PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 19/121



What Counts as a Side Effect?

Side effects change the world outside the function:

• Modifying a variable outside the function’s scope
• Changing the file system (create, delete, modify files)
• Writing to a database or making network requests
• Printing to screen or writing to logs
• Obtaining user input
• Modifying the DOM in a web page
• Throwing exceptions
• Accessing system state (current time, random numbers)
• Modifying data structures (arrays, objects) passed as arguments

Key insight: We don’t completely forbid side effects, we just want to contain them and control
when they happen!
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The Benefits of Purity: Cacheable (Memoization)

Memoization: ”Cache” (store) results of expensive function calls

const memoize = (f) => {

const cache = {};

return (...args) => {

const key = JSON.stringify(args);

if (!(key in cache)) {

cache[key] = f(...args); // Compute once

}

return cache[key]; // Return cached value

};

};

const expensiveSquare = memoize(x => {

console.log(`Computing ${x}²...`);

return x * x;

});

expensiveSquare(4); // "Computing 4²..." → 16

expensiveSquare(4); // → 16 (from cache, no logging!)

This only works for pure functions! Impure functions can’t be safely cached.
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The Benefits of Purity: Portable & Testable

Impure code hides dependencies:

const signUp = (attrs) => {

const user = saveUser(attrs); // Hidden DB dependency!

welcomeUser(user); // Hidden email service!

}; // IMPURE: Where do saveUser and welcomeUser come from?

Pure codemakes dependencies explicit:

const signUp = (db, emailService, attrs) => {

const user = saveUser(db, attrs);

welcomeUser(emailService, user);

return user;

}; // PURE: All dependencies are parameters

Testing benefits:
• No need to set up databases or email services
• Just pass mock objects as parameters (+ no cleanup needed after tests)
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The Benefits of Purity: Reasonable (Equational Reasoning)

Referential transparency: Can replace function call with its value

Example: If f(3) = 9, then:
• f(3) + f(3) equals 9 + 9

• 2 * f(3) equals 2 * 9

• Can reason algebraically about code!

Equational reasoning:
• Substitute ”equals for equals” (like algebra)
• Refactor with confidence
• Compiler can optimize automatically
• Humans can understand code more easily

Contrast with impure code: Can’t replace readFile() with its value, since it might return
different things!
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The Benefits of Purity: Parallel (Automatic Parallelization)

Pure functions are inherently thread-safe:

• No shared mutable state to protect
• No race conditions possible
• No need for locks or synchronization
• Can run in parallel automatically!

Example: Parallel map
• map f [1,2,3,4,5,6,7,8] with pure f
• Each f(i) is independent
• Can compute all in parallel with zero coordination
• Guaranteed to give same result as sequential execution

Critical for modern hardware: Multi-core processors need parallelism! From this point forward,
we strive to write all functions in a pure way.
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What Does ”First-Class” Mean?

First-class citizen: A value that can be used anywhere other values can be used

In most languages, numbers are first-class:

• Can store in variables: x = 42

• Can pass to functions: f(42)

• Can return from functions: return 42

• Can store in data structures: [42, 43, 44]

First-class functions: Functions can do all of the above!

• Store in variables: f = fun x => x + 1

• Pass to functions: map f xs

• Return from functions: return (fun x => x + n)

• Store in data structures: [f1, f2, f3]

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 26/121



Why First-Class Functions Matter

Enables abstraction over computation patterns:

Without first-class functions:
• Write separate loops for each transformation
• doubleList, squareList, incrementList, ...
• Duplicate loop logic everywhere
• Hard to see the pattern

With first-class functions:
• Write map once
• map double xs, map square xs, map increment xs

• Abstract the pattern (transform each element)
• Separate ”what” from ”how”

This is the foundation of functional programming!
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First-Class Functions in Lean: Storing in Variables

Functions are values - can be stored in variables:

-- Store function in a variable

def double : Nat → Nat := fun x => x * 2

-- Use it like any other value

#eval double 5 -- 10

-- Can create multiple "copies"

def myDouble := double

def alsoDouble := double

#eval myDouble 3 -- 6

#eval alsoDouble 3 -- 6

Key insight: double is just a name for a value (that happens to be a function).
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First-Class Functions: Passing to Functions

Functions can take other functions as arguments:

-- Takes a function and applies it twice

def twice (f : α → α) (x : α) : α :=

f (f x)

#eval twice (· + 1) 5 -- 7 (5 + 1 + 1)

#eval twice (· * 2) 3 -- 12 (3 * 2 * 2)

-- Apply function n times

def applyN (f : α → α) : Nat → α → α

| 0, x => x

| n+1, x => f (applyN f n x)

#eval applyN (· + 1) 5 0 -- 5 (add 1 five times to 0)

#eval applyN (· * 2) 3 1 -- 8 (double three times: 1→2→4→8)

Pattern: The function f is just another parameter!
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First-Class Functions: Returning Functions

Functions can return other functions:

-- Returns a function that adds n

def makeAdder (n : Nat) : Nat → Nat :=

fun x => x + n

def add5 := makeAdder 5

def add10 := makeAdder 10

#eval add5 3 -- 8 (3 + 5)

#eval add10 3 -- 13 (3 + 10)

-- Returns a function that multiplies by n

def makeMultiplier (n : Nat) : Nat → Nat :=

fun x => x * n

def double := makeMultiplier 2

def triple := makeMultiplier 3

#eval double 7 -- 14 (7 * 2)

#eval triple 7 -- 21 (7 * 3)

This is called a ”function factory” or ”higher-order function”
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First-Class Functions: In Data Structures

Functions can be stored in lists, tuples, etc:

-- List of functions

def operations : List (Nat → Nat) :=

[(· + 1), (· * 2), (· * ·)]

-- Apply each function to a value

def applyAll (fs : List (Nat → Nat)) (x : Nat) : List Nat :=

fs.map (fun f => f x)

#eval applyAll operations 5 -- [6, 10, 25]

-- Pair of functions

def mathOps : (Nat → Nat → Nat) × (Nat → Nat → Nat) :=

((· + ·), (· * ·))

#eval mathOps.1 3 4 -- 7 (addition)

#eval mathOps.2 3 4 -- 12 (multiplication)

This enables powerful patterns like strategy pattern without OOP!
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What is a Higher-Order Function?

Definition: A function that either:

• Takes one or more functions as arguments, OR

• Returns a function as its result, OR

• Both!

Examples we’ve seen:

• twice - takes function, applies it twice

• makeAdder - returns a function

• map - takes function, applies to each element

• filter - takes predicate function

• compose - takes two functions, returns their composition

Why is it so powerful? They abstract over computation patterns!
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Higher-Order Functions: The Power of Abstraction

Without higher-order functions:
• doubleList: Loop through list, double each element
• squareList: Loop through list, square each element
• incrementList: Loop through list, add 1 to each
• Lots of duplicated loop logic!

With map (higher-order function):
• Write loop logic once in map
• map double xs

• map square xs

• map increment xs

• Abstract the pattern: ”apply function to each element”

Higher-order functions let us separate ”what” from ”how”!
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Map: Transform Every Element

Pattern: Apply a transformation to every element

def map (f : α → β) : List α → List β

| [] => []

| x :: xs => f x :: map f xs

-- Examples:

#eval map (· * 2) [1, 2, 3, 4] -- [2, 4, 6, 8]

#eval map (· + 1) [1, 2, 3, 4] -- [2, 3, 4, 5]

#eval map String.length ["hi", "hello", "hey"] -- [2, 5, 3]

Type: (α → β) → List α → List β

• Takes function from α to β

• Takes list of α

• Returns list of β

• Each element transformed independently
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Map: Why It Matters

Declarative vs Imperative:

Imperative (how to do it):
• Create empty result list
• Loop through input list
• For each element, apply function
• Append to result list
• Return result list

Functional (what to do):
• map f xs

• Clear, concise, declarative
• The ”how” is hidden in map

Benefits: Less code, clearer intent, fewer bugs, easier to parallelize!
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Filter: Select Elements

Pattern: Keep only elements that satisfy a condition

def filter (p : α → Bool) : List α → List α

| [] => []

| x :: xs => if p x then x :: filter p xs

else filter p xs

-- Examples:

#eval filter (· > 5) [1, 8, 3, 9, 2, 7] -- [8, 9, 7]

#eval filter (· % 2 == 0) [1,2,3,4,5,6] -- [2, 4, 6]

#eval filter (fun s => s.length > 3) ["hi", "hello", "bye"] -- ["hello"]

Type: (α → Bool) → List α → List α

• Takes predicate function (returns Bool)

• Returns subset where predicate is true
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Filter: Common Use Cases

Filter is everywhere in real code:

• Data cleaning: Remove null/invalid values

• Search: Find items matching criteria

• Validation: Keep only valid inputs

• Filtering API results: Get only what you need

• Permission checks: Show only authorized items

Combines well withmap:

• Filter, then transform: map f (filter p xs)

• Transform, then filter: filter p (map f xs)

• Called ”method chaining” in some languages

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 38/121



Fold: Reduce to Single Value

Pattern: Combine all elements using a binary operation

def foldr (f : α → β → β) (init : β) : List α → β

| [] => init

| x :: xs => f x (foldr f init xs)

-- Examples:

#eval foldr (· + ·) 0 [1, 2, 3, 4] -- 10 (sum)

#eval foldr (· * ·) 1 [1, 2, 3, 4] -- 24 (product)

#eval foldr (· :: ·) [] [1, 2, 3] -- [1, 2, 3] (identity)

#eval foldr Nat.max 0 [3, 1, 4, 1, 5] -- 5 (maximum)

Type: (α → β → β) → β → List α → β

• Combining function: α → β → β

• Initial/default value: β
• Input list: List α

• Single result: β
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Understanding Fold

Fold replaces list constructors:

List structure:

• [1, 2, 3] = 1 :: (2 :: (3 :: []))

• Uses :: (cons) and [] (nil)

Fold replaces constructors:

• foldr f z replaces :: with f and [] with z

• 1 :: (2 :: (3 :: [])) becomes f 1 (f 2 (f 3 z))

Example: Sum

• foldr (+) 0 [1,2,3]

• 1 :: (2 :: (3 :: [])) → 1 + (2 + (3 + 0))

• Result: 6
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Fold: The Universal List Function

Many list operations are (secretly) just folds!

• sum: foldr (+) 0

• product: foldr (*) 1

• length: foldr (λ_ acc => acc + 1) 0

• reverse: foldl (λ acc x => x :: acc) []

• map f: foldr (λx acc => f x :: acc) []

• filter p: foldr (λx acc => if p x then x :: acc else acc) []

Fold is incredibly powerful! It’s the ”mother of all list operations.”
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Fold Right vs Fold Left

Two ways to fold:

-- Right fold: processes right to left

def foldr (f : α → β → β) (init : β) : List α → β

| [] => init

| x :: xs => f x (foldr f init xs)

-- Left fold: processes left to right

def foldl (f : β → α → β) (init : β) : List α → β

| [] => init

| x :: xs => foldl f (f init x) xs

Key difference:

• foldr: f 1 (f 2 (f 3 z)), i.e. right-associative

• foldl: f (f (f z 1) 2) 3, i.e. left-associative

• foldl is tail-recursive (more efficient!)
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Fold Right Example: Subtraction

Right fold with subtraction:

-- foldr (-) 10 [1, 2, 3]

-- = 1 - (2 - (3 - 10))

-- = 1 - (2 - (-7))

-- = 1 - 9

-- = -8

#eval foldr (· - ·) 10 [1, 2, 3] -- -8

Execution trace:

1. Process innermost first: 3 - 10 = -7

2. Then: 2 - (-7) = 9

3. Finally: 1 - 9 = -8

Associates to the right: 1 - (2 - (3 - 10))
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Fold Left Example: Subtraction

Left fold with subtraction:

-- foldl (-) 10 [1, 2, 3]

-- = ((10 - 1) - 2) - 3

-- = (9 - 2) - 3

-- = 7 - 3

-- = 4

#eval foldl (· - ·) 10 [1, 2, 3] -- 4

Execution trace:

1. Start with accumulator: 10

2. Process left to right: 10 - 1 = 9

3. Then: 9 - 2 = 7

4. Finally: 7 - 3 = 4

Associates to the left: ((10 - 1) - 2) - 3
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Summary: When to Use foldr vs foldl?

Use foldr when:
• Operation is naturally right-associative
• Building data structures (cons onto a list)
• Need to preserve order in certain operations
• Working with infinite lists (in lazy languages)
• Example: foldr (::) [] xs = identity

Use foldl when:
• Operation is naturally left-associative
• Need efficiency (tail recursion)
• Accumulating a result (sum, product, max)
• Building result incrementally
• Example: foldl (+) 0 xs = sum (efficient!)

For commutative operations (+ , *): Doesn’t matter mathematically, but foldl is more efficient!
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Function Composition

Pattern: Chain functions together

def compose (f : β → γ) (g : α → β) : α → γ :=

fun x => f (g x)

notation:90 f " ∘ " g => compose f g

def addOne := (· + 1)

def double := (· * 2)

#eval (addOne ∘ double) 5 -- 11 ((5*2) + 1)

#eval (double ∘ addOne) 5 -- 12 ((5+1)*2)

Type: (β → γ) → (α → β) → (α → γ)

Read: (f ∘ g)(x)means ”first apply g, then apply f to the result”
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Composition: Building Pipelines

Composition lets you build transformation pipelines:

Without composition:

• f(g(h(x))) - hard to read (inside-out)

• Have to trace execution backwards

• Parentheses get unwieldy with many functions

With composition:

• (f ∘ g ∘ h)(x) - reads naturally (right-to-left)

• Or define: pipeline = f ∘ g ∘ h, then use: pipeline(x)

• Can name intermediate transformations

• Reuse composed functions

Composition is associative: (f ∘ g) ∘ h = f ∘ (g ∘ h)
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Composition Example: Data Processing Pipeline

-- Individual transformations

def trim (s : String) : String := s.trim

def toLower (s : String) : String := s.toLower

def replaceSpaces (s : String) : String :=

s.replace " " "-"

-- Compose into pipeline

def slugify := replaceSpaces ∘ toLower ∘ trim

#eval slugify " Hello World "

-- "hello-world"

-- Can also chain with map

def slugifyAll := map slugify

#eval slugifyAll [" Hello ", " WORLD "]

-- ["hello", "world"]

Pattern: Build complex transformations from simple, reusable pieces!
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What is Currying?

Currying: Transform function taking multiple arguments into chain of functions each taking
one argument

Transform:

• From: f : (α × β) → γ (function taking pair)

• To: f : α → β → γ (function returning function)

• Notation: α → β → γ = α → (β → γ)

Named after Haskell Curry (mathematician, 1900-1982)

• Though actually invented by Gottlob Frege and Moses Schönfinkel

• Common in logic and functional programming

In Lean: All multi-argument functions are automatically curried!
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Why Currying Matters

Currying enables partial application:

Without currying:

• Function needs all arguments at once

• add(3, 4) gives 7

• Can’t easily create ”add 3 to something” function

With currying:

• add : Nat → Nat → Nat

• add 3 : Nat → Nat (partially applied - valid function!)

• add 3 4 : Nat (fully applied - gives result)

• Can create specialized functions easily

This is fundamental to functional programming style!
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Currying in Action

All these are equivalent:

-- Explicit nested lambdas

def add1 : Nat → Nat → Nat :=

fun x => fun y => x + y

-- Implicit currying (most common)

def add2 (x : Nat) (y : Nat) : Nat := x + y

-- Using operator

def add3 : Nat → Nat → Nat := (· + ·)

-- All have the same type

#check add1 -- Nat → Nat → Nat

#check add2 -- Nat → Nat → Nat

#check add3 -- Nat → Nat → Nat

Key insight: Nat → Nat → Natmeans Nat → (Nat → Nat)

• Function taking Nat
• Returning function taking Nat
• Which returns Nat
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Partial Application

Partial application: Supply some arguments, get back function waiting for rest

def add (x : Nat) (y : Nat) : Nat := x + y

-- Fully applied (all arguments provided)

#eval add 3 4 -- 7 : Nat

-- Partially applied (one argument provided)

def add3 := add 3

#check add3 -- Nat → Nat (it's a function!)

-- Use the partially applied function

#eval add3 4 -- 7

#eval add3 10 -- 13

#eval add3 100 -- 103

Pattern: Fix some parameters, get specialized function
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Partial Application: Creating Specialized Functions

-- General multiplication function

def multiply (a : Nat) (b : Nat) : Nat := a * b

-- Create specialized functions via partial application

def double := multiply 2

def triple := multiply 3

def quadruple := multiply 4

#eval double 7 -- 14

#eval triple 7 -- 21

#eval quadruple 7 -- 28

-- Use with higher-order functions

#eval map double [1, 2, 3, 4] -- [2, 4, 6, 8]

#eval map triple [1, 2, 3, 4] -- [3, 6, 9, 12]

#eval filter (· > 5) (map double [1, 2, 3, 4, 5])

-- [6, 8, 10]

This is incredibly powerful for code reuse!
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Partial Application: Real-World Examples

Common patterns using partial application:

Configuration functions:

• sendRequest = httpPost apiUrl authToken

• sendRequest data (use configured version)

Validators:

• isLongerThan min = (λs => s.length > min)

• filter (isLongerThan 5) strings

Comparators:

• isGreaterThan x = (λy => y > x)

• filter (isGreaterThan 10) numbers

Pattern: Create families of related functions from one general function!
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Curry and Uncurry: Converting Between Styles

curry: Convert from pairs to curried form

def curry {α β γ : Type} (f : (α × β) → γ) : α → β → γ :=

fun a b => f (a, b)

-- Example: function taking pair

def pairAdd (p : Nat × Nat) : Nat := p.1 + p.2

-- Convert to curried form

def curriedAdd := curry pairAdd

#eval pairAdd (3, 4) -- 7

#eval curriedAdd 3 4 -- 7 (can partial apply now!)

#eval (curry pairAdd) 3 4 -- 7 (inline)

Use case: Work with legacy code or APIs expecting pairs
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Uncurry: Converting Curried to Pairs

uncurry: Convert from curried to pair form

def uncurry {α β γ : Type} (f : α → β → γ) : (α × β) → γ :=

fun (a, b) => f a b

-- Example: curried function

def add (a b : Nat) : Nat := a + b

-- Convert to pair form

def pairAdd := uncurry add

#eval add 3 4 -- 7

#eval pairAdd (3, 4) -- 7

#eval uncurry add (3, 4) -- 7 (inline)

Use case: When you have pairs of data and want to apply curried function

Note: uncurry (curry f) = f and curry (uncurry g) = g (isomorphism!)
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Flip: Reverse Argument Order

flip: Swap the order of the first two arguments

def flip {α β γ : Type} (f : α → β → γ) : β → α → γ :=

fun b a => f a b

-- Example: subtraction (order matters!)

def sub (a b : Nat) : Int := (a : Int) - (b : Int)

#eval sub 10 3 -- 7 (10 - 3)

#eval flip sub 10 3 -- -7 (3 - 10, flipped!)

-- Useful for partial application

def subtractFrom10 := flip sub 10

#eval subtractFrom10 3 -- 7 (10 - 3)

#eval subtractFrom10 5 -- 5 (10 - 5)

Use case: Make partial application more convenient!
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Flip: Why It’s Useful

Problem: Sometimes argument order is inconvenient

Example: append
• append xs ys appends ys to xs
• Want: appendToXs = append xs (partially applied)
• But often we want to append to a fixed list!
• Solution: prependToYs = flip append ys

Example: division
• div a b computes a / b

• Want: ”divide something by 2”
• divideBy2 = flip div 2

• Now: divideBy2 10 = 5

Pattern: Flip lets you partially apply the ”wrong” argument!
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Const: The Constant Function

const: Returns function that always returns same value

def const {α β : Type} (a : α) : β → α :=

fun _ => a

-- Ignores its argument, always returns a

#eval (const 42) "hello" -- 42

#eval (const true) 100 -- true

#eval (const "x") [1, 2, 3] -- "x"

Type: α → β → α

• Takes value of type α

• Returns function β → α

• That function ignores its argument

• Always returns the original α value
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Const: Use Cases

Replace all elements in a list:

#eval map (const 0) [1, 2, 3, 4] -- [0, 0, 0, 0]

#eval map (const "x") [1, 2, 3] -- ["x", "x", "x"]

-- Create a function that replaces with a value

def replaceWith (value : α) : List β → List α :=

map (const value)

#eval replaceWith 7 ["a", "b", "c"] -- [7, 7, 7]

Provide default values:

-- When you need a function but want constant output

def alwaysValid : String → Bool := const true

def alwaysFalse : Nat → Bool := const false

#eval filter alwaysValid ["a", "b"] -- ["a", "b"]

#eval filter alwaysFalse [1, 2, 3] -- []
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Section 2
The Theory of Functional Programming

Subsection 2.5

Inductive Types (Deep Dive)



Inductive Types: The Foundation

Recall fromWeek 2: Inductive types are the core building block in Lean

Key properties:

• No junk: Only values from constructors exist

• No confusion: Different constructors ≠ different values

• Structural induction: Pattern match = proof by cases

Why important for functional programming:

• Exhaustive pattern matching (compiler checks!)

• Structural recursion (guaranteed termination)

• Type-safe by construction

• Compose data structures safely

Today: We’ll see how these enable powerful functional patterns
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Enumerated Types (Refresher)

Simplest inductive type: Finite list of elements

inductive Weekday where

| sunday | monday | tuesday | wednesday

| thursday | friday | saturday

deriving Repr, BEq

-- Pattern match to define functions

def numberOfDay : Weekday → Nat

| .sunday => 1

| .monday => 2

| .tuesday => 3

| .wednesday => 4

| .thursday => 5

| .friday => 6

| .saturday => 7

def isWeekend : Weekday → Bool

| .saturday => true

| .sunday => true

| _ => false -- catch-all pattern
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PatternMatching: Exhaustiveness Checking

Lean requires exhaustive patterns:

Without catch-all:

• Must handle every constructor

• Compiler checks you haven’t missed any

• Prevents bugs from unhandled cases

With catch-all (_):

• Handles ”all other cases”

• Useful when most cases have same behavior

• But be careful - might hide bugs if you add constructors later!

Best practice: Be explicit when possible, use catch-all when justified
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The ”No Junk, No Confusion” Principle

No Junk: Only constructor-built values exist

-- For Weekday: only these 7 values exist

-- No "undefined", no "null", no special error values

def allWeekdays : List Weekday :=

[.sunday, .monday, .tuesday, .wednesday,

.thursday, .friday, .saturday]

No Confusion: Different constructors build different values

-- Lean knows these are different

theorem monday_ne_tuesday : Weekday.monday ≠ Weekday.tuesday := by

intro h

cases h -- Contradiction! Different constructors

-- Can use in proofs and programs

def isSameDay (d1 d2 : Weekday) : Bool :=

d1 == d2 -- Uses BEq derived from "no confusion"
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Example: Color Mixing

inductive Color where

| Red | Green | Blue

deriving Repr, BEq

-- Complex pattern matching

def mixColors : Color → Color → Color

| .Red, .Blue => .Green

| .Blue, .Red => .Green

| .Red, .Green => .Blue

| .Green, .Red => .Blue

| .Blue, .Green => .Red

| .Green, .Blue => .Red

| c, _ => c -- Same color or mixing with itself

#eval mixColors .Red .Blue -- Color.Green

#eval mixColors .Red .Red -- Color.Red

#eval mixColors .Green .Blue -- Color.Red

Pattern: Define behavior explicitly for each case combination
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Structures: Product Types

Structures: Group related values with named fields

structure Point where

x : Float

y : Float

deriving Repr

-- Create values

def origin : Point := { x := 0.0, y := 0.0 }

def p : Point := { x := 3.0, y := 4.0 }

-- Access fields

#eval origin.x -- 0.0

#eval p.y -- 4.0

-- Pattern match on structure

def isOrigin : Point → Bool

| { x := 0.0, y := 0.0 } => true

| _ => false

Key: Structures are immutable - can’t modify fields!
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Operations on Structures

structure Point where

x : Float

y : Float

deriving Repr

def addPoints (p q : Point) : Point :=

{ x := p.x + q.x, y := p.y + q.y }

def scalePoint (k : Float) (p : Point) : Point :=

{ x := k * p.x, y := k * p.y }

def distance (p q : Point) : Float :=

Float.sqrt ((p.x - q.x)^2 + (p.y - q.y)^2)

#eval addPoints { x := 1.0, y := 2.0 } { x := 3.0, y := 4.0 }

-- { x := 4.0, y := 6.0 }

#eval scalePoint 2.0 { x := 3.0, y := 4.0 }

-- { x := 6.0, y := 8.0 }

Pattern: Pure functions on immutable data!

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 69/121



Functional Update Syntax

Create new struct with some fields changed:

structure Point where

x : Float

y : Float

deriving Repr

def p : Point := { x := 1.0, y := 2.0 }

-- Functional update: {struct with field := newValue}

def moveRight (p : Point) (dx : Float) : Point :=

{ p with x := p.x + dx }

def moveUp (p : Point) (dy : Float) : Point :=

{ p with y := p.y + dy }

#eval moveRight p 3.0 -- { x := 4.0, y := 2.0 }

#eval moveUp p 5.0 -- { x := 1.0, y := 7.0 }

-- Update multiple fields

def move (p : Point) (dx dy : Float) : Point :=

{ p with x := p.x + dx, y := p.y + dy }

Key: Original struct p is unchanged!
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Why Immutability Matters

Immutable data structures:

Benefits:
• No accidental modifications
• Safe to share between threads
• Can reason about code locally
• History is preserved (time-travel debugging!)
• Easier to test (no hidden state changes)

Cost:
• Must copy data for updates
• More memory usage (but structural sharing helps!)
• Different mindset from imperative programming

Tradeoff: Safety and clarity vs performance
• For most programs: Safety wins!
• For critical paths: Can use mutable structures carefully
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Sum Types: ”This OR That”

Sum types: Value is one type OR another

inductive Sum (α : Type) (β : Type) where

| inl : α → Sum α β -- "in left" - value of type α

| inr : β → Sum α β -- "in right" - value of type β

-- Example: String or Int

def value1 : Sum String Int := Sum.inl "hello"

def value2 : Sum String Int := Sum.inr 42

-- Must pattern match to use

def showSum : Sum String Int → String

| Sum.inl s => s!"Got string: {s}"

| Sum.inr n => s!"Got int: {n}"

#eval showSum value1 -- "Got string: hello"

#eval showSum value2 -- "Got int: 42"

Type system forces you to handle both cases!
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Sum Types: Modeling Alternatives

Sum typesmodel ”either/or” situations:

Use cases:

• Result type: Sum Error Success

• Parsing: Sum ParseError AST

• User input: Sum Cancel Submit

• Multiple formats: Sum JSON XML

• Error handling: Sum Exception Value

Contrast with OOP:

• OOP: Inheritance hierarchy (fragile, implicit)

• FP: Sum types (explicit, exhaustive, safe)

Compiler ensures you handle all alternatives!
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Option Types: The ”Billion Dollar Fix”

Option type: Explicit absence of value

inductive Option (α : Type) where

| none : Option α -- No value present

| some : α → Option α -- Value present

-- Safe list head

def head? {α : Type} : List α → Option α

| [] => none

| x :: _ => some x

#eval head? [1, 2, 3] -- some 1

#eval head? ([] : List Nat) -- none

-- Type forces you to handle both cases!

def process (xs : List Nat) : Nat :=

match head? xs with

| none => 0 -- Must handle empty case

| some x => x + 1 -- Only here do we have value

No NullPointerException possible!
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Working with Option

-- Get value or default

def getOrDefault {α : Type} (opt : Option α) (default : α) : α :=

match opt with

| none => default

| some x => x

#eval getOrDefault (some 42) 0 -- 42

#eval getOrDefault none 0 -- 0

-- Map over Option

def mapOption {α β : Type} (f : α → β) : Option α → Option β

| none => none

| some x => some (f x)

#eval mapOption (· + 1) (some 5) -- some 6

#eval mapOption (· + 1) none -- none

-- Chain operations

def andThen {α β : Type} (opt : Option α) (f : α → Option β) : Option β :=

match opt with

| none => none

| some x => f x
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Option: Why It’s Better Than Null

Problemwith null:
• String s = maybeGetUser() - is s null?
• Type doesn’t say - must check at runtime
• Forget to check → NullPointerException
• Costs billions in bugs and crashes

Solution with Option:
• Option String vs String - different types!
• Type tells you ”might be absent”
• Can’t use value without checking
• Forget to check → compile error (safe!)
• Null pointer errors literally impossible

This is ”Tony Hoare’s billion dollar fix”!
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Recursive Types: Natural Numbers

Inductive types can be recursive:

inductive Nat where

| zero : Nat -- Base case

| succ : Nat → Nat -- Recursive case

-- Representation:

-- 0 = zero

-- 1 = succ zero

-- 2 = succ (succ zero)

-- 3 = succ (succ (succ zero))

def add : Nat → Nat → Nat

| n, Nat.zero => n

| n, Nat.succ m => Nat.succ (add n m)

#eval add 2 3 -- 5

Pattern: Define operations by structural recursion
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Recursive Types: Lists

inductive List (α : Type) where

| nil : List α

| cons : α → List α → List α

-- Sugar: [1, 2, 3] = cons 1 (cons 2 (cons 3 nil))

def length {α : Type} : List α → Nat

| [] => 0

| _ :: xs => 1 + length xs

def append {α : Type} : List α → List α → List α

| [], ys => ys

| x :: xs, ys => x :: append xs ys

#eval length [1, 2, 3, 4] -- 4

#eval append [1, 2] [3, 4, 5] -- [1, 2, 3, 4, 5]

Pattern: Base case (nil) + recursive case (cons)
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Polymorphism in Inductive Types

Type parameters make structures generic:

• List α works for any type α
• Option α can wrap any type
• Sum α β combines any two types
• BTree α stores any type in nodes

Examples:
• List Nat - list of numbers
• List String - list of strings
• List (List Nat) - list of lists
• Option (List Nat) - maybe a list
• Sum String (List Nat) - string or list

Write once, use for all types!
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Deriving Instances

Auto-generate useful functionality:

inductive Weekday where

| sunday | monday | tuesday | wednesday

| thursday | friday | saturday

deriving Repr, BEq, Ord, Inhabited

-- Repr: String representation

#eval Weekday.monday -- Weekday.monday

-- BEq: Boolean equality

#eval Weekday.monday == Weekday.tuesday -- false

-- Ord: Ordering (for sorting)

#eval compare Weekday.monday Weekday.friday

-- Ordering.lt

-- Inhabited: Default value

#eval (default : Weekday) -- Weekday.sunday

Lean generates implementations automatically!
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Section 2
The Theory of Functional Programming

Subsection 2.6

List Operations (Deep Dive)



ZipWith: Combine Two Lists

Pattern: Combine corresponding elements from two lists

def zipWith {α β γ : Type} (f : α → β → γ) :

List α → List β → List γ

| [], _ => []

| _, [] => []

| x :: xs, y :: ys => f x y :: zipWith f xs ys

#eval zipWith (· + ·) [1, 2, 3] [4, 5, 6]

-- [5, 7, 9] (1+4, 2+5, 3+6)

#eval zipWith (· * ·) [2, 3, 4] [5, 6, 7]

-- [10, 18, 28] (2*5, 3*6, 4*7)

#eval zipWith (·, ·) [1, 2, 3] ["a", "b", "c"]

-- [(1, "a"), (2, "b"), (3, "c")]

Stops at shorter list!
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ZipWith: Use Cases

Common applications:

Vector operations:

• Add vectors: zipWith (+) v1 v2

• Dot product: sum (zipWith (*) v1 v2)

Data alignment:

• Merge two datasets: zipWith combine data1 data2

• Pair IDs with values: zipWith (,) ids values

Comparisons:

• Element-wise comparison: zipWith (==) expected actual

• Find differences: filter (not ∘ uncurry (==)) (zipWith (,) xs ys)

Pattern: Operate on aligned data frommultiple sources
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DropWhile: Skip Elements

Pattern: Remove from front while predicate holds

def dropWhile {α : Type} (p : α → Bool) : List α → List α

| [] => []

| x :: xs => if p x then dropWhile p xs

else x :: xs

#eval dropWhile (· < 5) [1, 2, 3, 6, 4, 7]

-- [6, 4, 7] (stopped at 6)

#eval dropWhile (· % 2 == 0) [2, 4, 6, 1, 8]

-- [1, 8] (stopped at 1)

#eval dropWhile (· < 10) [1, 2, 3, 4]

-- [] (all dropped)

#eval dropWhile (· > 10) [1, 2, 3, 4]

-- [1, 2, 3, 4] (nothing dropped)

Key: Stops at first element where predicate is false!

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 84/121



DropWhile: Complementary Functions

Related functions:

-- takeWhile: opposite of dropWhile

def takeWhile {α : Type} (p : α → Bool) : List α → List α

| [] => []

| x :: xs => if p x then x :: takeWhile p xs

else []

#eval takeWhile (· < 5) [1, 2, 3, 6, 4, 7]

-- [1, 2, 3] (before first ≥ 5)

-- drop: drop exactly n elements

def drop {α : Type} : Nat → List α → List α

| 0, xs => xs

| _, [] => []

| n+1, _ :: xs => drop n xs

#eval drop 2 [1, 2, 3, 4, 5]

-- [3, 4, 5]

Pattern: Different ways to remove elements from front
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Partition: Split by Predicate

Pattern: Split into (matching, non-matching) groups

def partition {α : Type} (p : α → Bool) :

List α → (List α × List α)

| [] => ([], [])

| x :: xs =>

let (matches, others) := partition p xs

if p x then (x :: matches, others)

else (matches, x :: others)

#eval partition (· % 2 == 0) [1, 2, 3, 4, 5, 6]

-- ([2, 4, 6], [1, 3, 5])

#eval partition (· > 5) [1, 8, 3, 9, 2, 7]

-- ([8, 9, 7], [1, 3, 2])

Property: Concatenating results gives original list (order preserved!)
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Partition: Applications

Use cases:

Quicksort:
• Partition around pivot
• partition (< pivot) xs

• Recursively sort both partitions

Data filtering:
• Separate valid from invalid
• Process each group differently
• Keep both groups for analysis

User selection:
• Selected vs unselected items
• Process selected items
• Keep unselected for later

Pattern: One pass through list, two outputs!
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Interleave: Merge Alternating

Pattern: Alternate elements from two lists

def interleave {α : Type} : List α → List α → List α

| [], ys => -- Base case: first list empty

| xs, [] => -- Base case: second list empty

| x :: xs, y :: ys => -- Recursive: take from each, recurse

#eval interleave [1,3,5] [2,4,6]

-- [1, 2, 3, 4, 5, 6]

#eval interleave [1,2] [10,20,30,40]

-- [1, 10, 2, 20, 30, 40]

#eval interleave ["a", "b"] ["x", "y", "z"]

-- ["a", "x", "b", "y", "z"]

Use case: Merge two sorted sequences while preserving order
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SplitAt: Split at Index

Pattern: Split list at given position

def splitAt {α : Type} : Nat → List α → (List α × List α)

| 0, xs => -- Base case: split at 0

| _, [] => -- Base case: empty list

| n+1, x :: xs => -- Recursive case: split tail, add x to left part

#eval splitAt 2 [1,2,3,4,5]

-- ([1, 2], [3, 4, 5])

#eval splitAt 0 [1,2,3]

-- ([], [1, 2, 3])

#eval splitAt 10 [1,2,3]

-- ([1, 2, 3], [])

Property: append (splitAt n xs).1 (splitAt n xs).2 = xs
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FindIndex: Locate Element

Pattern: Find position of first match

def findIndexHelper {α : Type} (p : α → Bool) :

Nat → List α → Option Nat

| _, [] => none

| n, x :: xs =>

if p x then some n

else findIndexHelper p (n+1) xs

def findIndex {α : Type} (p : α → Bool) : List α → Option Nat :=

findIndexHelper p 0

#eval findIndex (· > 5) [1, 3, 6, 2, 8]

-- some 2 (found 6 at index 2)

#eval findIndex (· > 10) [1, 3, 6, 2, 8]

-- none (not found)

Helper pattern: Track index with accumulator!
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FindIndex: Why Option?

Why return Option Nat?

Problem: Element might not exist

• Can’t return -1 (not a Nat)

• Can’t return special ”not found” value

• Could throw exception (but not FP style!)

Solution: Option Nat

• some n when found at index n

• none when not found

• Type system forces caller to handle both cases

• No special values, no exceptions!

This is the FP way!
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GroupConsecutive: Group Adjacent Equals

Pattern: Group consecutive equal elements

def groupConsecutive {α : Type} [BEq α] : List α → List (List α)

| [] => -- Base case: empty list

| x :: xs =>

match xs with

| [] => -- Single element: group of one

| y :: ys =>

if x == y then -- x equals y: add x to first group from recursion

else -- x differs from y: start new group with x

-- Algorithm: Compare adjacent elements, build groups

#eval groupConsecutive [1,1,2,2,2,3,3]

-- [[1,1], [2,2,2], [3,3]]

Algorithm: Build groups by checking adjacent elements
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Section 3

Binary Trees (Deep Dive)



Binary Trees: Definition

Recall: Recursive structure with at most two children

inductive BTree (α : Type) : Type where

| empty : BTree α

| node : α → BTree α → BTree α → BTree α

deriving Repr

-- Example tree:

-- 5

-- / \

-- 3 7

-- /

-- 1

def exampleTree : BTree Nat :=

BTree.node 5

(BTree.node 3

(BTree.node 1 BTree.empty BTree.empty)

BTree.empty)

(BTree.node 7 BTree.empty BTree.empty)
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Tree Size: Count All Nodes

def size {α : Type} : BTree α → Nat

| BTree.empty => 0

| BTree.node _ l r => 1 + size l + size r

def tree1 : BTree Nat :=

BTree.node 1 BTree.empty BTree.empty

def tree2 : BTree Nat :=

BTree.node 2 tree1 tree1

#eval size (BTree.empty : BTree Nat) -- 0

#eval size tree1 -- 1

#eval size tree2 -- 3 (root + 2 children)

Pattern: 1 (current node) + size of left + size of right

Time complexity: O(n) - visits every node once
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TreeMirror: Swap Subtrees

def mirror {α : Type} : BTree α → BTree α

| BTree.empty => BTree.empty

| BTree.node a l r => BTree.node a (mirror r) (mirror l)

-- Original: Mirror:

-- 5 5

-- / \ / \

-- 3 7 7 3

-- / \

-- 1 1

#eval mirror exampleTree

Property: mirror (mirror t) = t (involutive!)

Use case: Horizontal flip, RTL vs LTR display
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Tree Height: MaximumDepth

def height {α : Type} : BTree α → Nat

| BTree.empty => 0

| BTree.node _ l r => 1 + Nat.max (height l) (height r)

#eval height (BTree.empty : BTree Nat) -- 0

#eval height tree1 -- 1

#eval height tree2 -- 2

-- Unbalanced tree (worst case):

-- 1

-- \

-- 2

-- \

-- 3

def unbalanced : BTree Nat :=

BTree.node 1 BTree.empty

(BTree.node 2 BTree.empty

(BTree.node 3 BTree.empty BTree.empty))

#eval height unbalanced -- 3

Height affects performance of search operations!
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Tree Height: Balanced vs Unbalanced

Heightmatters for performance:

Balanced tree (height≈ log 𝑛):
• Height grows slowly with number of nodes

• Search, insert, delete: O(log n)

• Example: 1000 nodes → height 10

Unbalanced tree (height≈ 𝑛):
• Height can equal number of nodes

• Degrades to linked list

• Search, insert, delete: O(n)

• Example: 1000 nodes → height 1000

Self-balancing trees (AVL, Red-Black) maintain O(log n) height!
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MapTree: Transform Values

def mapTree {α β : Type} (f : α → β) : BTree α → BTree β

| BTree.empty => BTree.empty

| BTree.node a l r =>

BTree.node (f a) (mapTree f l) (mapTree f r)

#eval mapTree (· + 1) tree1

-- node 2 empty empty

#eval mapTree (· * 2) tree2

-- node 4 (node 2 empty empty) (node 2 empty empty)

#eval mapTree toString exampleTree

-- Converts all values to strings

Likemap for lists, but for trees!

Preserves structure, transforms values
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CountLeaves: NodesWithout Children

Leaf node: No children (both empty)

def countLeaves {α : Type} : BTree α → Nat

| BTree.empty => 0

| BTree.node _ BTree.empty BTree.empty => 1 -- Leaf!

| BTree.node _ l r => countLeaves l + countLeaves r

def leaf : BTree Nat :=

BTree.node 1 BTree.empty BTree.empty

def branch : BTree Nat :=

BTree.node 2 leaf leaf

#eval countLeaves (BTree.empty : BTree Nat) -- 0

#eval countLeaves leaf -- 1

#eval countLeaves branch -- 2

#eval countLeaves exampleTree -- 2 (nodes 1 and 7)

Pattern: Special case for leaves, recurse otherwise
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Contains: Search for Value

def contains {α : Type} [BEq α] (x : α) : BTree α → Bool

| BTree.empty => false

| BTree.node a l r =>

a == x || contains x l || contains x r

#eval contains 1 leaf -- true

#eval contains 5 leaf -- false

#eval contains 2 branch -- true

#eval contains 1 branch -- true (in children)

#eval contains 7 exampleTree -- true

#eval contains 4 exampleTree -- false

Time complexity: O(n) worst case (must check all nodes)

Better: Binary search tree can do O(log n)!
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MaxElement: FindMaximum

def maxElement {α : Type} [Ord α] [Max α] : BTree α → Option α

| BTree.empty => none

| BTree.node a l r =>

let maxL := maxElement l

let maxR := maxElement r

match maxL, maxR with

| none, none => some a

| some x, none => some (max a x)

| none, some y => some (max a y)

| some x, some y => some (max a (max x y))

#eval maxElement (BTree.empty : BTree Nat) -- none

#eval maxElement leaf -- some 1

#eval maxElement branch -- some 2

#eval maxElement exampleTree -- some 7

Pattern: Compare node with max of both subtrees
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Inorder Traversal

Order: Left subtree → Root → Right subtree

def inorder {α : Type} : BTree α → List α

| BTree.empty => []

| BTree.node a l r => inorder l ++ [a] ++ inorder r

-- Tree:

-- 2

-- / \

-- 1 3

def orderedTree : BTree Nat :=

BTree.node 2

(BTree.node 1 BTree.empty BTree.empty)

(BTree.node 3 BTree.empty BTree.empty)

#eval inorder orderedTree -- [1, 2, 3]

#eval inorder exampleTree -- [1, 3, 5, 7]

Property: For binary search tree, returns sorted list!
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Tree Traversals: The Three Orders

Threemain traversal orders:

Inorder (left-root-right):

• For BST: gives sorted sequence

• Used for: printing sorted values

Preorder (root-left-right):

• Process node before children

• Used for: copying tree, expression evaluation

Postorder (left-right-root):

• Process node after children

• Used for: deleting tree, postfix expressions

Different orders for different use cases!
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Level-Order Traversal (Breadth-First)

Process nodes level by level:

def levelOrderHelper {α : Type} :

Nat → List (BTree α) → List (List α)

| 0, _ => []

| _, [] => []

| fuel+1, trees =>

let values := trees.filterMap (fun t =>

match t with

| BTree.empty => none

| BTree.node a _ _ => some a)

if values.isEmpty then []

else

let children := trees.flatMap (fun t =>

match t with

| BTree.empty => []

| BTree.node _ l r => [l, r])

values :: levelOrderHelper fuel children

def levelOrder {α : Type} (t : BTree α) : List (List α) :=

levelOrderHelper 100 [t]
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Level-Order: Example

-- Tree:

-- 5

-- / \

-- 3 7

-- / \

-- 1 9

#eval levelOrder exampleTree

-- [[5], [3, 7], [1]]

-- Each inner list is one level!

Use cases:
• Finding shortest path in tree
• Level-wise processing
• Pretty printing trees
• Serialization preserving structure

Pattern: Queue of nodes to process (BFS!)
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Section 4

PatternMatching (Deep Dive)



PatternMatching Expressions

Syntax: match [the term] with | pattern => result

-- Count elements satisfying predicate

def count {α : Type} (p : α → Bool) : List α → Nat

| [] => 0

| x :: xs =>

match p x with

| true => 1 + count p xs

| false => count p xs

#eval count (· > 5) [1, 8, 3, 9, 2, 7] -- 3

-- Multiple patterns

def describe (n : Nat) : String :=

match n with

| 0 => "zero"

| 1 => "one"

| 2 => "two"

| _ => "many"
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PatternMatching on Structures

structure Point where

x : Float

y : Float

def isOrigin : Point → Bool

| {x := 0.0, y := 0.0} => true

| _ => false

#eval isOrigin {x := 0.0, y := 0.0} -- true

#eval isOrigin {x := 1.0, y := 0.0} -- false

-- Extract components

def describe : Point → String

| {x := 0.0, y := 0.0} => "origin"

| {x := x, y := 0.0} => s!"on x-axis at {x}"

| {x := 0.0, y := y} => s!"on y-axis at {y}"

| {x := x, y := y} => s!"at ({x}, {y})"

#eval describe {x := 3.0, y := 0.0}

-- "on x-axis at 3.000000"
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Nested PatternMatching

-- Pattern match on multiple structures

def comparePoints : Point → Point → String

| {x := x1, y := y1}, {x := x2, y := y2} =>

if x1 == x2 && y1 == y2 then "equal"

else if x1 == x2 then "same x"

else if y1 == y2 then "same y"

else "different"

-- Match on Option in List

def getFirst {α : Type} : List (Option α) → Option α

| [] => none

| none :: xs => getFirst xs

| some x :: _ => some x

#eval getFirst [none, none, some 42, some 7] -- some 42

Pattern: Destructure nested data in one step!

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 110/121



Section 5

Mathematical Induction



Structural Induction on Lists

Principle: To prove P[xs] for all lists, prove:

1. Base case: P[[]]

2. Inductive step: ∀𝑥 𝑥𝑠, 𝑃 [𝑥𝑠] ⟹ 𝑃[𝑥 ∶∶ 𝑥𝑠]

Why it works:

• All lists built from [] and ::

• Base case handles empty list

• Inductive step handles cons

• Together: covers all lists!

This is patternmatching on steroids!
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Example: Reverse is Involutive

Theorem: reverse (reverse xs) = xs

theorem reverse_reverse {α : Type} (xs : List α) :

reverse (reverse xs) = xs := by

induction xs with

| nil =>

rfl -- Base: reverse [] = []

| cons x xs ih =>

-- Inductive: assume reverse (reverse xs) = xs

-- Show: reverse (reverse (x :: xs)) = x :: xs

simp [reverse]

rw [ih] -- Use induction hypothesis

-- This proof works because lists are inductive!

Pattern: Prove base case, use IH in inductive case
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Structural Induction on Trees

Principle: To prove P[t] for all trees, prove:

1. Base case: P[empty]

2. Inductive step: ∀𝑎 𝑙 𝑟, 𝑃 [𝑙] ⟹ 𝑃[𝑟] ⟹ 𝑃[node 𝑎 𝑙 𝑟]

Why it works:

• All trees built from empty and node

• Base case handles empty

• Inductive step: assume true for subtrees

• Prove true for node with those subtrees

Two induction hypotheses (one per subtree)!
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Example: Mirror is Involutive

Theorem: mirror (mirror t) = t

theorem mirror_mirror {α : Type} (t : BTree α) :

mirror (mirror t) = t := by

induction t with

| empty =>

rfl -- Base: mirror empty = empty

| node a l r ih_l ih_r =>

-- Inductive: assume mirror (mirror l) = l

-- and mirror (mirror r) = r

-- Show: mirror (mirror (node a l r)) = node a l r

simp [mirror]

rw [ih_l, ih_r] -- Use both IHs!

-- Two IHs because two recursive calls in definition!
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Section 6

Summary



WhatWe’ve Learned

Functional Programming Core:
• Pure functions: deterministic, no side effects
• First-class functions: pass, return, store
• Higher-order functions: map, filter, fold, compose
• Currying and partial application

Data Structures:
• Inductive types: no junk, no confusion
• Structures: immutable records
• Sum types and Option: explicit alternatives
• Lists and trees: recursive structures

Techniques:
• Pattern matching: exhaustive, safe
• Structural recursion: guaranteed termination
• Mathematical induction: prove correctness
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Section 7

Assignments & Next Steps



This Week’s Assignments

Readings (see the course website)
• Theorem Proving in Lean 4 (Chapter 4)

• Functional Programming in Lean 4 (Chapters 1-2-3 + Interlude 1)

• The Hitchhiker’s Guide to Logical Verification (Chapter 5)

“Hand-in” Assignments (see the course website)
• PROOF101 Quiz 3 (due next time)

• Programming Assignment 3: Functional Programming (due next time)

Assignment covers: All concepts from today + Week 2 inductive types
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Questions & Discussion

Questions?

Join our community:
Discord: https://discord.gg/ZNGE8Xgd

Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu

PROOF101 Week 3 Functional Programming Daniel Dia & Guest Lecturers (AUB) 120/121



“OOP makes code understandable by
encapsulating moving parts. FP does
so by minimizing moving parts.”

—Michael Feathers

PROOF101: Formal Verification &
Proof Assistants
Google Developer Groups@ AUB
& AUBMath Society
Spring 2026

Week 3 of 10
Functional Programming
Daniel Dia & Guest Lecturers
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