
“Beware of bugs in the above code; I
have only proved it correct, not tried

it.”

— Donald Knuth

PROOF101: Formal Verification &
Proof Assistants
Google Developer Groups@ AUB
& AUBMath Society
Spring 2026

Week 5 of 10
Proofs & Semantics
Daniel Dia & Guest Lecturers
https:

//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/


Section 1

Week 4 Review



WhatWe Covered Last Week

Dr. Nadim Kobeissi’s lectures on proof techniques:

Backward Proofs (Tactic Mode):

• Working from goal to hypotheses
• Basic tactics: intro, apply, exact, assumption
• Reasoning about connectives and equality
• Mathematical induction

Forward Proofs (Structured Proofs):

• Working from hypotheses to goal
• Structured constructs: fix, assume, show, have
• Calculational proofs with calc
• The Propositions-as-Types (PAT) principle

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 3/102



Section 2

Backward Proofs: Tactic Mode



Two Proof Styles in Lean

Backward (Tactic) Proofs:

• Start from the goal
• Work backwards to hypotheses
• Interactive, step-by-step refinement
• Use tactics to transform goals

Forward (Structured) Proofs:

• Start from hypotheses
• Build toward the goal
• More like traditional math proofs
• Explicit intermediate steps

Both styles can be mixed and are equally powerful!
PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 5/102



Tactic Mode Syntax

Keyword: by indicates tactical proof

theorem example_theorem :

statement := by

tactic1

tactic2

...

tacticN

done

Components:

• by - enters tactic mode

• Each tactic transforms proof state

• done - optional, marks proof completion

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 6/102



Section 2
Backward Proofs: Tactic Mode

Subsection 2.1

Basic Tactics



The intro Tactic

Purpose: Move assumptions into context

theorem fst_of_two_props :

∀a b : Prop, a → b → a := by

intro a b -- Move ∀-quantified variables

intro ha hb -- Move implications

apply ha

done

What intro does:

• Moves∀-quantified variables from goal to context

• Moves implications (→) into hypotheses

• Changes goal from𝐴 → 𝐵 to just𝐵 (with𝐴 as hypothesis)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 8/102



The apply Tactic

Purpose: Match goal with theorem’s conclusion

theorem prop_comp (a b c : Prop)

(hab : a → b) (hbc : b → c) :

a → c := by

intro ha

apply hbc -- Goal c matches conclusion of hbc

apply hab -- New goal b matches conclusion of hab

apply ha -- New goal a matches ha

done

Backward reasoning:

• To prove 𝑐, use 𝑏 → 𝑐 (creates goal 𝑏)
• To prove 𝑏, use 𝑎 → 𝑏 (creates goal 𝑎)
• To prove 𝑎, we already have it!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 9/102



The exact Tactic

Purpose: Provide exact proof term for goal

theorem fst_of_two_props_exact (a b : Prop)

(ha : a) (hb : b) :

a := by

exact ha -- ha is exactly what we need

done

Difference from apply:

• apply: Can create new subgoals

• exact: Must completely solve the goal

• exact: Communicates intent more clearly

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 10/102



The assumption Tactic

Purpose: Find matching hypothesis automatically

theorem fst_of_two_props_assumption (a b : Prop)

(ha : a) (hb : b) :

a := by

assumption -- Searches context for matching hypothesis

done

How it works:

• Searches local context for hypothesis matching goal

• Applies it automatically

• Useful when there are many hypotheses

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 11/102



Section 2
Backward Proofs: Tactic Mode

Subsection 2.2

Reasoning About Logical Connectives



Introduction Rules for Connectives

Building proofs of compound propositions:

#check True.intro -- : True

#check And.intro -- : a → b → a ∧ b

#check Or.inl -- : a → a ∨ b

#check Or.inr -- : b → a ∨ b

#check Iff.intro -- : (a → b) → (b → a) → (a ↔ b)

#check Exists.intro -- : ∀(a : α), P a → ∃x, P x

These are constructors - they build proofs

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 13/102



Elimination Rules for Connectives

Extracting information from compound propositions:

#check False.elim -- : False → a

#check And.left -- : a ∧ b → a

#check And.right -- : a ∧ b → b

#check Or.elim -- : a ∨ b → (a → c) → (b → c) → c

#check Iff.mp -- : (a ↔ b) → a → b

#check Iff.mpr -- : (a ↔ b) → b → a

#check Exists.elim -- : (∃x, P x) → (∀x, P x → c) → c

These are destructors - they extract information

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 14/102



Proving Conjunction (And)

theorem And_swap (a b : Prop) :

a ∧ b → b ∧ a := by

intro hab

apply And.intro

{ apply And.right

exact hab }

{ apply And.left

exact hab }

done

Steps:

1. Assume we have 𝑎 ∧ 𝑏
2. To prove 𝑏 ∧ 𝑎, use And.intro
3. First subgoal: prove 𝑏 (extract from 𝑎 ∧ 𝑏)
4. Second subgoal: prove 𝑎 (extract from 𝑎 ∧ 𝑏)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 15/102



The Focus Combinator

Use braces to focus on subgoals:

theorem And_swap (a b : Prop) :

a ∧ b → b ∧ a := by

intro hab

apply And.intro

{ exact And.right hab } -- First subgoal

{ exact And.left hab } -- Second subgoal

done

Benefits of { ... }:

• Structure proofs clearly

• Each subgoal completely solved inside braces

• Error if subgoal not fully proven

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 16/102



Proving Disjunction (Or)

theorem Or_swap (a b : Prop) :

a ∨ b → b ∨ a := by

intro hab

apply Or.elim hab

{ intro ha

exact Or.inr ha }

{ intro hb

exact Or.inl hb }

done

Case analysis on disjunction:

• Or.elim: Split into two cases

• Case 1: If we have 𝑎, prove goal
• Case 2: If we have 𝑏, prove goal

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 17/102



Negation in Lean

Negation is defined as implication to False:

#print Not -- def Not (a : Prop) : Prop := a → False

theorem Not_Not_intro (a : Prop) :

a → ¬¬ a := by

intro ha hna

apply hna

exact ha

done

Key insight:

• ¬𝑎means 𝑎 → False

• To prove¬𝑎, assume 𝑎 and derive contradiction
• ¬¬𝑎means (𝑎 → False) → False

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 18/102



Existential Quantification

def double (n : ℕ) : ℕ := n + n

theorem Exists_double_iden :

∃n : ℕ, double n = n := by

apply Exists.intro 0

rfl

done

To prove ∃𝑥, P(x):
• Provide witness: Exists.intro witness

• Prove P holds for that witness

• Here: 𝑛 = 0 and double 0 = 0

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 19/102



Section 2
Backward Proofs: Tactic Mode

Subsection 2.3

Reasoning About Equality



Three Kinds of Equality

1. Syntactic equality: 𝑥 = 𝑥, [2, 1, 3] = [2, 1, 3]
• Literally the same expression

2. Definitional equality: 2 + 2 = 4
• Equal up to computation/reduction

• Proved by rfl

3. Propositional equality: 𝑥 + 𝑦 = 𝑦 + 𝑥
• Requires proof

• Not automatically true

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 21/102



The rfl Tactic

rfl: Proves definitional equality

-- β-reduction (function application)

theorem β_example {α β : Type} (f : α → β) (a : α) :

(fun x => f x) a = f a := by

rfl

-- δ-reduction (definition unfolding)

def double (n : ℕ) : ℕ := n + n

theorem δ_example :

double 5 = 5 + 5 := by

rfl

rfl works when: Both sides compute to same value

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 22/102



The rw Tactic

rw: Rewrite using equation

theorem Eq_trans_symm_rw {α : Type} (a b c : α)

(hab : a = b) (hcb : c = b) :

a = c := by

rw [hab] -- Replace a with b

rw [hcb] -- Replace c with b

done

Features:

• Apply equation left-to-right

• Use← for right-to-left: rw [←hab]

• Can expand definitions

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 23/102



The simp Tactic

simp: Simplify using standard rewrites

theorem cong_example {α : Type} (a b c d : α)

(g : α → α → ℕ → α)

(hab : a = b) (hcd : c = d) :

g a c (1 + 1) = g b d 2 := by

simp [hab, hcd]

What simp does:

• Applies standard simplification rules

• Can add custom rules: simp [theorem1, theorem2]

• Works exhaustively until no more simplifications

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 24/102



The ac_rfl Tactic

ac_rfl: Associativity and commutativity

theorem abc_Eq_cba (a b c : ℕ) :

a + b + c = c + b + a := by

ac_rfl

What it handles:

• Reordering terms: 𝑎 + 𝑏 = 𝑏 + 𝑎
• Regrouping: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
• Works for+, ∗, and registered operators

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 25/102



Section 2
Backward Proofs: Tactic Mode

Subsection 2.4

Mathematical Induction



The induction Tactic

Principle: Prove property for all values by cases

theorem add_zero (n : ℕ) :

add 0 n = n := by

induction n with

| zero => rfl

| succ n' ih => simp [add, ih]

Two cases:

• Base case (zero): Prove for 0

• Inductive case (succ): Prove for 𝑛′ + 1 assuming true for 𝑛′

• ih is the induction hypothesis

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 27/102



Induction Example: Commutativity

theorem add_comm (m n : ℕ) :

add m n = add n m := by

induction n with

| zero =>

simp [add, add_zero]

| succ n' ih =>

simp [add, add_succ, ih]

Pattern:

1. Base case: Usually simple (often rfl)

2. Inductive case: Use ih (induction hypothesis)

3. Simplify with simp using relevant lemmas

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 28/102



Section 3

Forward Proofs: Structured Constructs



Forward vs Backward Reasoning

Backward (we just saw):

• Start with goal

• Break it down into subgoals

• Work until we reach axioms/hypotheses

Forward (now):

• Start with what we know

• Build up intermediate results

• Eventually reach the goal

Both styles are useful! Choose based on problem.

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 30/102



Structured Proof Keywords

Key constructs:

fix: Introduce variables (like intro)
assume: Introduce hypotheses (like intro)
show ... from: State and prove goal
have: Prove intermediate result

theorem fst_of_two_props :

∀a b : Prop, a → b → a :=

fix a b : Prop

assume ha : a

assume hb : b

show a from ha

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 31/102



The fix Keyword

fix: Introduce universally quantified variables

theorem example_fix :

∀a b : Prop, ... :=

fix a b : Prop

...

Like intro but forward-style:

• Moves variables into context

• More explicit about types

• Can introduce multiple at once

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 32/102



The assume Keyword

assume: Introduce hypothesis

theorem modus_ponens (a b : Prop) :

(a → b) → a → b :=

assume hab : a → b

assume ha : a

show b from

hab ha

Forward reasoning:

• Start by assuming hypotheses

• Build proof from what we have

• Eventually show the goal

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 33/102



The show Keyword

show ... from: State goal explicitly

theorem example_show (a b : Prop) (ha : a) (hb : b) :

a :=

show a from ha

Benefits:

• Documents what we’re proving

• Can rephrase goal (up to computation)

• Makes proof more readable

Optional: Can omit if obvious: just ha

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 34/102



The have Keyword

have: Prove intermediate lemma

theorem prop_comp (a b c : Prop)

(hab : a → b) (hbc : b → c) :

a → c :=

assume ha : a

have hb : b := hab ha

have hc : c := hbc hb

show c from hc

Forward chaining:

• Build intermediate results

• Each have adds to context

• Chain reasoning step by step

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 35/102



Forward vs Backward: Same Proof

Backward style:

theorem And_swap_tactical (a b : Prop) :

a ∧ b → b ∧ a := by

intro hab

apply And.intro

{ exact And.right hab }

{ exact And.left hab }

Forward style:

theorem And_swap (a b : Prop) :

a ∧ b → b ∧ a :=

assume hab : a ∧ b

have ha : a := And.left hab

have hb : b := And.right hab

show b ∧ a from And.intro hb ha

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 36/102



Calculational Proofs

calc: Chain equalities/inequalities

theorem two_mul_example (m n : ℕ) :

2 * m + n = m + n + m :=

calc

2 * m + n = m + m + n := by rw [Nat.two_mul]

_ = m + n + m := by ac_rfl

Benefits:

• Clear chain of reasoning

• Each step explicitly justified

• Like handwritten math proofs

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 37/102



Mixing Styles

Can use backward proofs within forward proofs:

theorem example_mixed (a b : Prop) :

(∀x, x = true → a) → a :=

assume hall : ∀x, x = true → a

show a from

by

apply hall true

rfl

Best of both worlds:

• High-level structure: forward

• Low-level details: backward tactics

• Choose what’s clearest

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 38/102



Section 4

The PAT Principle



Propositions as Types (PAT)

Deep insight: Programs and proofs are the same thing!

Programs ↔ Proofs
Types ↔ Propositions

→ ↔ ⟹
Execution ↔ Verification

This is the foundation of proof assistants like Lean!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 40/102



PAT: Types as Propositions

Every type is a proposition:

• Type𝐴 → 𝐵 = Proposition ”𝐴 implies𝐵”
• Type𝐴 × 𝐵 = Proposition ”𝐴 and𝐵”
• Type𝐴 + 𝐵 = Proposition ”𝐴 or𝐵”
• Empty type = False

• Unit type = True

A type is inhabited if and only if the corresponding proposition is provable!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 41/102



PAT: Terms as Proofs

Every term is a proof:

• Term of type𝐴 → 𝐵 = Proof that𝐴 implies𝐵
• Function application = Modus ponens

• Lambda abstraction = Proof of implication

• Pair = Proof of conjunction

• Sum = Proof of disjunction

Type checking = Proof checking!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 42/102



PAT Example: Modus Ponens

As a logical rule:
𝐴 𝐴 → 𝐵

𝐵
As a function:

theorem modus_ponens {A B : Prop}

(h1 : A → B) (h2 : A) : B :=

h1 h2 -- Function application!

Key insight:

• ℎ1 ∶ 𝐴 → 𝐵 is a function from𝐴 to𝐵
• ℎ2 ∶ 𝐴 is an input

• ℎ1 ℎ2 ∶ 𝐵 is function application

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 43/102



PAT: Universal Quantification

Remarkably: ∀ is just a dependent function!

∀𝑥 ∶ 𝜎, 𝑃 (𝑥) ∶= (𝑥 ∶ 𝜎) → 𝑃(𝑥)

-- These are the same!

theorem example1 : ∀n : ℕ, n + 0 = n := ...

theorem example2 : (n : ℕ) → n + 0 = n := ...

∀ is not primitive - it’s defined as dependent functions!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 44/102



PAT: Proof Terms

Tactics compile to proof terms:

-- Tactical proof

theorem And_swap_tactical (a b : Prop) :

a ∧ b → b ∧ a := by

intro hab

exact And.intro (And.right hab) (And.left hab)

-- Raw proof term (what tactics compile to)

theorem And_swap_raw (a b : Prop) :

a ∧ b → b ∧ a :=

fun hab => And.intro (And.right hab) (And.left hab)

Both are exactly the same to Lean!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 45/102



Why PATMatters

Unification of concepts:

• No separate ”proof language”

• All of type theory applies to proofs

• Can reason about proofs as data

Practical benefits:

• Type checker = Proof checker

• Programming features work for proofs

• Proofs can compute

• Can extract programs from proofs

This is the foundation of dependent type theory!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 46/102



Section 5

Inductive Predicates



What are Inductive Predicates?

Inductive predicate: Function of type⋯ → Prop

Like inductive types, but for propositions:

• Define by introduction rules

• ”No junk, no confusion”

• Can do induction on proof terms

Think of them as:

• Formal systems (logic)

• Horn clauses (Prolog)

• Inference rules (proof theory)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 48/102



Example: Even Numbers

Mathematical definition:
The set𝐸 of even natural numbers is the smallest set closed under: (1) 0 ∈ 𝐸 and (2)
if 𝑘 ∈ 𝐸 then 𝑘 + 2 ∈ 𝐸.

In Lean:

inductive Even : ℕ → Prop where

| zero : Even 0

| add_two : ∀k : ℕ, Even k → Even (k + 2)

Two introduction rules construct all even number proofs!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 49/102



Using Even: Proving 4 is Even

theorem Even_4 : Even 4 := by

apply Even.add_two

apply Even.add_two

exact Even.zero

Proof tree:

• 4 = 2 + 2, so use Even.add_two with 𝑘 = 2
• Need to prove Even 2

• 2 = 0 + 2, so use Even.add_two with 𝑘 = 0
• Need to prove Even 0

• Use Even.zero

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 50/102



ThreeWays to Define ”Even”

1. Inductive predicate:
• Abstract, elegant
• Independent rules
• Natural for proofs

2. Recursive function:
• Computational
• Works with #eval
• Need to handle all cases

3. Direct definition:
• Most ”mathematical”
• def evenNonrec (k : ℕ) : Prop := k % 2 = 0

Each has its uses! Inductive predicates excel at complex specifications.
PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 51/102



Example: Tennis Scores

Model valid tennis scores:

inductive Score : Type where

| vs : ℕ → ℕ → Score

| advServ : Score

| advRecv : Score

| gameServ : Score

| gameRecv : Score

infixr:50 ” – ” => Score.vs

Transition system: Which scores can follow from 0-0?

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 52/102



Tennis Score Transitions

inductive Step : Score → Score → Prop where

| serv_0_15 : ∀n, Step (0–n) (15–n)

| serv_15_30 : ∀n, Step (15–n) (30–n)

| serv_30_40 : ∀n, Step (30–n) (40–n)

| serv_40_game : ∀n, n < 40 → Step (40–n) Score.gameServ

| serv_40_adv : Step (40–40) Score.advServ

| recv_0_15 : ∀n, Step (n–0) (n–15)

...

Binary predicate: Connects ”before” and ”after” states

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 53/102



Reflexive Transitive Closure

Star: Reflexive transitive closure of any relation

inductive Star {α : Type} (R : α → α → Prop) :

α → α → Prop where

| base (a b : α) : R a b → Star R a b

| refl (a : α) : Star R a a

| trans (a b c : α) :

Star R a b → Star R b c → Star R a c

Three rules:

• base: Embed𝑅 into Star𝑅
• refl: Reflexivity

• trans: Transitivity

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 54/102



Logical Symbols as Inductive Predicates

Most logical symbols are defined inductively!

• ∧ (And): One constructor taking both props

• ∨ (Or): Two constructors (left or right)

• ↔ (Iff): One constructor taking both directions

• ∃ (Exists): One constructor with witness
• True: One constructor (trivial proof )

• False: Zero constructors (no proof!)

• = (Eq): One constructor (reflexivity)

Only∀ and→ are built into the logic!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 55/102



Definition of And

inductive And (a b : Prop) : Prop where

| intro : a → b → And a b

To prove 𝑎 ∧ 𝑏:
• Must use And.intro

• Need proof of 𝑎
• Need proof of 𝑏

To use hypothesis ℎ ∶ 𝑎 ∧ 𝑏:
• Extract left: And.left h : a

• Extract right: And.right h : b

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 56/102



Definition of Or

inductive Or (a b : Prop) : Prop where

| inl : a → Or a b

| inr : b → Or a b

To prove 𝑎 ∨ 𝑏:
• Either use Or.inl (prove 𝑎)
• Or use Or.inr (prove 𝑏)

To use hypothesis ℎ ∶ 𝑎 ∨ 𝑏:
• Case analysis with Or.elim

• Handle both possibilities

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 57/102



Definition of Exists

inductive Exists {α : Type} (P : α → Prop) : Prop where

| intro : ∀a : α, P a → Exists P

Syntactic sugar: ∃𝑥 ∶ 𝛼, 𝑃 (𝑥) := Exists (λx : α, P)

To prove ∃𝑥, 𝑃 (𝑥):
• Provide witness 𝑎
• Prove 𝑃(𝑎)

To use hypothesis ℎ ∶ ∃𝑥, 𝑃 (𝑥):
• Eliminate to get witness and proof

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 58/102



Definition of Equality

inductive Eq {α : Type} : α → α → Prop where

| refl : ∀a : α, Eq a a

Only one constructor: Reflexivity!

From just refl, we can prove:

• Symmetry: 𝑎 = 𝑏 → 𝑏 = 𝑎
• Transitivity: 𝑎 = 𝑏 → 𝑏 = 𝑐 → 𝑎 = 𝑐
• Substitution: 𝑎 = 𝑏 → 𝑃(𝑎) → 𝑃(𝑏)

All equality properties follow from reflexivity!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 59/102



Rule Induction

Just as we induct on values, we can induct on proofs!

Called rule induction because:

• Induction on introduction rules

• One case per constructor

• Induction hypothesis for recursive constructors

By PAT: This is just structural induction on proof terms!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 60/102



Rule Induction Example

theorem mod_two_Eq_zero_of_Even (n : ℕ) (h : Even n) :

n % 2 = 0 := by

induction h with

| zero =>

rfl

| add_two k hk ih =>

simp [Nat.add_mod, ih]

Two cases from Even constructors:

• zero: Prove 0 % 2 = 0
• add_two: Assume 𝑘 % 2 = 0 (ih), prove (𝑘 + 2) % 2 = 0

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 61/102



Example: Sorted Lists

inductive Sorted : List ℕ → Prop where

| nil : Sorted []

| single (x : ℕ) : Sorted [x]

| two_or_more (x y : ℕ) {zs : List ℕ}

(hle : x ≤ y)

(hsorted : Sorted (y :: zs)) :

Sorted (x :: y :: zs)

Three constructors:

• Empty list is sorted

• Single element is sorted

• Two or more: first≤ second, rest sorted

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 62/102



Proving Sorted Lists

theorem sorted_7_9_9_11 :

Sorted [7, 9, 9, 11] := by

apply Sorted.two_or_more

{ simp } -- 7 ≤ 9

{ apply Sorted.two_or_more

{ simp } -- 9 ≤ 9

{ apply Sorted.two_or_more

{ simp } -- 9 ≤ 11

{ exact Sorted.single _ } } }

Build proof step by step using constructors

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 63/102



Example: Palindromes

inductive Palindrome {α : Type} : List α → Prop where

| nil : Palindrome []

| single (x : α) : Palindrome [x]

| sandwich (x : α) (xs : List α)

(hxs : Palindrome xs) :

Palindrome ([x] ++ xs ++ [x])

Recursive structure:

• Empty and single elements are palindromes

• Sandwich: same element on both ends + palindromemiddle

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 64/102



Example: Full Binary Trees

inductive IsFull {α : Type} : BTree α → Prop where

| empty : IsFull BTree.empty

| node (a : α) (l r : BTree α)

(hl : IsFull l) (hr : IsFull r)

(hiff : l = BTree.empty ↔ r = BTree.empty) :

IsFull (BTree.node a l r)

Full tree property:

• Empty tree is full

• Node is full if: both subtrees full, and either both empty or both non-empty

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 65/102



Section 6

Operational Semantics



What is Formal Semantics?

Formal semantics: Mathematical specification of what programs mean

Why formalize?

• Specify programming languages precisely

• Reason about programs mathematically

• Build verified compilers, interpreters, analyzers

• Find bugs in language specifications

Success story: WebAssembly

• Formalization revealed multiple soundness bugs

• Fixed before becoming standards

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 67/102



Why Proof Assistants for Semantics?

Goodmatch for automation:

• Little background machinery needed

• Lots of cases (computers excel at this)

• Track changes when extending language

• Catch subtle bugs

Real world: 30%+ of papers at the Principles of Programming Languages (POPL) conference
use proof assistants

In this lecture: Build operational semantics for a simple language

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 68/102



TheWHILE Language

Minimalistic imperative language:

𝑆 ∶∶= skip (no-op)

| 𝑥 ∶= 𝑎 (assignment)

| 𝑆; 𝑆 (sequence)

| if 𝐵 then 𝑆 else 𝑆 (conditional)

| while 𝐵 do 𝑆 (loop)

State: Function from variable names to values

• State = String → ℕ

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 69/102



WHILE in Lean

inductive Stmt : Type where

| skip : Stmt

| assign : String → (State → ℕ) → Stmt

| seq : Stmt → Stmt → Stmt

| ifThenElse : (State → Prop) → Stmt → Stmt → Stmt

| whileDo : (State → Prop) → Stmt → Stmt

infixr:90 ”; ” => Stmt.seq

Design choice: Shallow embedding

• Expressions are Lean functions: State → ℕ

• Conditions are predicates: State → Prop

• Simpler than deep embedding (ASTs)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 70/102



ExampleWHILE Program

-- while x > y do

-- skip;

-- x := x - 1

def sillyLoop : Stmt :=

Stmt.whileDo (fun s => s ”x” > s ”y”)

(Stmt.skip;

Stmt.assign ”x” (fun s => s ”x” - 1))

What it does:

• While 𝑥 > 𝑦
• Decrement 𝑥
• Eventually 𝑥 ≤ 𝑦

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 71/102



Two Kinds of Operational Semantics

Big-step semantics (natural semantics):

• Judgment: (𝑆, 𝑠) ⇒ 𝑡
• ”Starting in state 𝑠, executing 𝑆 terminates in state 𝑡”
• Direct: one step from start to finish

Small-step semantics (structural operational semantics):

• Judgment: (𝑆, 𝑠) ⇒ (𝑆′, 𝑠′)
• ”One step of execution”

• Execution is a chain of steps

Both are useful! Different strengths and weaknesses.

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 72/102



Section 6
Operational Semantics

Subsection 6.1

Big-Step Semantics



Big-Step: The Idea

Judgment form: (𝑆, 𝑠) ⇒ 𝑡

Read as:

• Starting in state 𝑠
• Executing statement 𝑆
• Terminates in state 𝑡

Example:
(𝑥 ∶= 𝑥 + 𝑦; 𝑦 ∶= 0, [𝑥 ↦ 3, 𝑦 ↦ 5]) ⇒ [𝑥 ↦ 8, 𝑦 ↦ 0]

Single judgment for entire execution!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 74/102



Big-Step: Skip Rule

(skip, 𝑠) ⇒ 𝑠

Skip does nothing:

• No premises (axiom)

• State unchanged

• Simplest rule

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 75/102



Big-Step: Assignment Rule

(𝑥 ∶= 𝑎, 𝑠) ⇒ 𝑠[𝑥 ↦ 𝑠(𝑎)]

Assignment updates state:

• Evaluate expression 𝑎 in state 𝑠
• Update state: 𝑥maps to new value
• Notation: 𝑠[𝑥 ↦ 𝑣]means state with 𝑥 updated to 𝑣

Example: (𝑥 ∶= 5, [𝑥 ↦ 3]) ⇒ [𝑥 ↦ 5]

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 76/102



Big-Step: Sequence Rule

(𝑆, 𝑠) ⇒ 𝑡 (𝑇 , 𝑡) ⇒ 𝑢
(𝑆; 𝑇 , 𝑠) ⇒ 𝑢

Sequential composition:

• Execute 𝑆 first: 𝑠 → 𝑡
• Then execute 𝑇: 𝑡 → 𝑢
• Final state: 𝑢

Intermediate state 𝑡 threads through!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 77/102



Big-Step: Conditional Rules

(𝑆, 𝑠) ⇒ 𝑡
(if 𝐵 then 𝑆 else 𝑇 , 𝑠) ⇒ 𝑡

if 𝑠(𝐵) is true

(𝑇 , 𝑠) ⇒ 𝑡
(if 𝐵 then 𝑆 else 𝑇 , 𝑠) ⇒ 𝑡

if 𝑠(𝐵) is false

Two rules depending on condition:

• If𝐵 true: execute then-branch

• If𝐵 false: execute else-branch

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 78/102



Big-Step: While Rules

(𝑆, 𝑠) ⇒ 𝑡 (while 𝐵 do 𝑆, 𝑡) ⇒ 𝑢
(while 𝐵 do 𝑆, 𝑠) ⇒ 𝑢

if 𝑠(𝐵) is true

(while 𝐵 do 𝑆, 𝑠) ⇒ 𝑠
if 𝑠(𝐵) is false

While loop:

• If condition false: done (state unchanged)

• If condition true: execute body, then loop again

• Recursive rule!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 79/102



Big-Step in Lean

inductive BigStep : Stmt × State → State → Prop where

| skip (s) :

BigStep (Stmt.skip, s) s

| assign (x a s) :

BigStep (Stmt.assign x a, s) (s[x ↦ a s])

| seq (S T s t u)

(hS : BigStep (S, s) t)

(hT : BigStep (T, t) u) :

BigStep (S; T, s) u

...

infix:110 ” => ” => BigStep

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 80/102



Using Big-Step Semantics

theorem sillyLoop_from_1_BigStep :

(sillyLoop, (fun _ => 0)[”x” ↦ 1]) => (fun _ => 0) := by

rw [sillyLoop]

apply BigStep.while_true

{ simp } -- Condition: x > y

{ apply BigStep.seq

{ apply BigStep.skip }

{ apply BigStep.assign } }

{ simp

apply BigStep.while_false

simp }

Build proof using introduction rules!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 81/102



Properties of Big-Step Semantics

What can we prove?

1. Determinism:

• If (𝑆, 𝑠) ⇒ 𝑡 and (𝑆, 𝑠) ⇒ 𝑡′

• Then 𝑡 = 𝑡′

• Execution is deterministic!

2. Program equivalence:

• Prove two programs equivalent

• Same semantics in all states

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 82/102



Determinism of Big-Step

theorem BigStep_deterministic {Ss l r}

(hl : Ss → l) (hr : Ss → r) :

l = r := by

induction hl generalizing r with

| skip s =>

cases hr with | skip => rfl

| assign x a s =>

cases hr with | assign => rfl

| seq S T s l₀ l hS hT ihS ihT =>

cases hr with

| seq _ _ _ r₀ _ hS' hT' =>

cases ihS hS' with | refl =>

cases ihT hT' with | refl => rfl

...

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 83/102



What Big-Step Cannot Express

Limitations:

1. Nontermination:

• No judgment for infinite loops

• Can’t prove ∃t, (S, s) ⟹ t for all programs

2. Intermediate states:

• Only see start and end

• Can’t reason about what happens during execution

3. Interleaving:

• Can’t model concurrent execution

Solution: Small-step semantics!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 84/102



Section 6
Operational Semantics

Subsection 6.2

Small-Step Semantics



Small-Step: The Idea

Judgment form: (𝑆, 𝑠) ⇒ (𝑆′, 𝑠′)

Read as:

• Starting in state 𝑠
• Executing one step of 𝑆
• Leaves us in state 𝑠′

• With program 𝑆′ remaining

Execution: Chain of steps

(𝑆0, 𝑠0) ⇒ (𝑆1, 𝑠1) ⇒ (𝑆2, 𝑠2) ⇒ ⋯

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 86/102



Small-Step: Configuration

Configuration: Pair (𝑆, 𝑠) of statement and state

Final configuration: No more steps possible

• For WHILE: Only (skip, 𝑠) is final
• Execution terminates when we reach final configuration

Example execution:

(𝑥 ∶= 𝑥 + 𝑦; 𝑦 ∶= 0, [𝑥 ↦ 3, 𝑦 ↦ 5])
⇒ (skip; 𝑦 ∶= 0, [𝑥 ↦ 8, 𝑦 ↦ 5])
⇒ (𝑦 ∶= 0, [𝑥 ↦ 8, 𝑦 ↦ 5])
⇒ (skip, [𝑥 ↦ 8, 𝑦 ↦ 0])

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 87/102



Small-Step: Assignment Rule

(𝑥 ∶= 𝑎, 𝑠) ⇒ (skip, 𝑠[𝑥 ↦ 𝑠(𝑎)])

Assignment in one step:

• Evaluate and update state

• Leave skip to indicate completion

• No further evaluation needed

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 88/102



Small-Step: Sequence Rules

(𝑆, 𝑠) ⇒ (𝑆′, 𝑠′)
(𝑆; 𝑇 , 𝑠) ⇒ (𝑆′; 𝑇 , 𝑠′)

(skip; 𝑆, 𝑠) ⇒ (𝑆, 𝑠)

Two rules:

• If first statement can step: step it

• If first statement is skip: discard it

Second statement stays unchanged until first completes!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 89/102



Small-Step: Conditional Rules

(if 𝐵 then 𝑆 else 𝑇 , 𝑠) ⇒ (𝑆, 𝑠)
if 𝑠(𝐵) is true

(if 𝐵 then 𝑆 else 𝑇 , 𝑠) ⇒ (𝑇 , 𝑠)
if 𝑠(𝐵) is false

One step to choose branch:

• Evaluate condition

• Replace with chosen branch

• State unchanged

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 90/102



Small-Step: While Rule

(while 𝐵 do 𝑆, 𝑠) ⇒ (if 𝐵 then (𝑆; while 𝐵 do 𝑆) else skip, 𝑠)

Unfold while loop:

• Replace with conditional

• If true: body then loop again

• If false: skip (done)

• No evaluation here - just transformation

Note: There’s no rule for skip! (It’s final)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 91/102



Small-Step in Lean

inductive SmallStep :

Stmt × State → Stmt × State → Prop where

| assign (x a s) :

SmallStep (Stmt.assign x a, s)

(Stmt.skip, s[x ↦ a s])

| seq_step (S S' T s s')

(hS : SmallStep (S, s) (S', s')) :

SmallStep (S; T, s) (S'; T, s')

| seq_skip (T s) :

SmallStep (Stmt.skip; T, s) (T, s)

...

infixr:100 ” ⇒ ” => SmallStep

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 92/102



Reflexive Transitive Closure

Need to chain steps together!

Use Star (reflexive transitive closure):

• (𝑆, 𝑠) ⇒∗ (𝑆′, 𝑠′)
• Zero or more steps from (𝑆, 𝑠) to (𝑆′, 𝑠′)

Big-step via small-step:

(𝑆, 𝑠) ⇒ 𝑡 ⟺ (𝑆, 𝑠) ⇒∗ (skip, 𝑡)

This connects the two semantics!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 93/102



Properties of Small-Step Semantics

What can we prove?

1. Determinism:

• Each configuration steps to at most one next configuration

• Execution is deterministic

2. Finality:

• Only skip is final

• Ensures we have all necessary rules

3. Equivalence with big-step:

• (𝑆, 𝑠) ⇒ 𝑡 ⟺ (𝑆, 𝑠) ⇒∗ (skip, 𝑡)

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 94/102



Finality Theorem

theorem SmallStep_final (S s) :

(¬ ∃T t, (S, s) ⇒ (T, t)) ↔ S = Stmt.skip := by

induction S with

| skip =>

simp

intros T t hstep

cases hstep

| assign x a =>

simp

exact ⟨_, _, SmallStep.assign ..⟩

| seq S T ihS ihT => ...

...

Proof by induction on statement structure

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 95/102



Big-Step vs Small-Step

Big-step advantages:

• Simpler (one relation)

• Direct connection to result

• Easier for some proofs

Small-step advantages:

• Can express nontermination

• Can reason about intermediate states

• Can model concurrency/interleaving

• More compositional

Use whichever fits your needs!

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 96/102



Section 7

Summary



WhatWe Learned

Proof techniques:
• Backward proofs: tactics working from goal
• Forward proofs: structured constructs
• PAT principle: propositions as types

Inductive predicates:
• Define propositions inductively
• Introduction and elimination rules
• Rule induction on proofs

Operational semantics:
• Formalize programming language meaning
• Big-step: entire execution
• Small-step: one step at a time
• Prove properties of programs and languages

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 98/102



Section 8

Assignments & Next Steps



This Week’s Assignments

Readings
• LoVe Demo 3: Backward Proofs

• LoVe Demo 4: Forward Proofs

• LoVe Demo 6: Inductive Predicates

• LoVe Demo 9: Operational Semantics

Assignments
• Quiz 5: Proofs and Semantics (due next week)

• Programming Assignment 5: Implement and verify semantics

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 100/102



Questions & Discussion

Questions?

Join our community:
Discord: https://discord.gg/ZNGE8Xgd

Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 101/102



“Beware of bugs in the above code; I
have only proved it correct, not tried

it.”

— Donald Knuth

PROOF101: Formal Verification &
Proof Assistants
Google Developer Groups@ AUB
& AUBMath Society
Spring 2026

Week 5 of 10
Proofs & Semantics
Daniel Dia & Guest Lecturers
https:

//danieldia-dev.github.io/proofs/

https://danieldia-dev.github.io/proofs/
https://danieldia-dev.github.io/proofs/

	Week 4 Review
	Backward Proofs: Tactic Mode
	Basic Tactics
	Reasoning About Logical Connectives
	Reasoning About Equality
	Mathematical Induction

	Forward Proofs: Structured Constructs
	The PAT Principle
	Inductive Predicates
	Operational Semantics
	Big-Step Semantics
	Small-Step Semantics

	Summary
	Assignments & Next Steps

