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Section 1

Week 4 Review




What We Covered Last Week

Dr. Nadim Kobeissi's lectures on proof techniques:

Backward Proofs (Tactic Mode):
® Working from goal to hypotheses
® Basic tactics: intro, apply, exact, assumption
® Reasoning about connectives and equality

® Mathematical induction

Forward Proofs (Structured Proofs):
® Working from hypotheses to goal

® Structured constructs: fix, assume, show, have

Calculational proofs with calc
® The Propositions-as-Types (PAT) principle
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Section 2

Backward Proofs: Tactic Mode




Two Proof Styles in Lean

Backward (Tactic) Proofs:

® Start from the goal

Work backwards to hypotheses
® |nteractive, step-by-step refinement

Use tactics to transform goals

Forward (Structured) Proofs:

® Start from hypotheses

Build toward the goal

More like traditional math proofs

® Explicit intermediate steps

Both styles can be mixed and are equally powerful!
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Tactic Mode Syntax

Keyword: by indicates tactical proof

theorem example_theorem :
statement := by
tacticl
tactic2

tacticN
done

Components:
® by - enters tactic mode
® Each tactic transforms proof state

® done - optional, marks proof completion
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Section 2

Subsection 2.1




The intro Tactic

Purpose: Move assumptions into context

theorem fst_of two_props :
Ya b : Prop, a > b - a := by

intro a b -- Move Y-quantified variables
intro ha hb -- Move implications
apply ha
done
What intro does:

® Moves V-quantified variables from goal to context
® Moves implications (—) into hypotheses
® Changes goal from A — Bto just B (with A as hypothesis)
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The apply Tactic

Purpose: Match goal with theorem’s conclusion

theorem prop_comp (a b ¢ : Prop)
(hab : a » b) (hbc : b~ c) :

a-c :=hy
intro ha
apply hbc -- Goal c matches conclusion of hbc
apply hab -- New goal b matches conclusion of hab
apply ha -- New goal a matches ha
done

Backward reasoning:
® To prove ¢, use b — c (creates goal b)
® To prove b, use a — b (creates goal a)

® To prove a, we already have it!
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The exact Tactic

Purpose: Provide exact proof term for goal

theorem fst_of two_props_exact (a b : Prop)
(ha : a) (hb : b) :

a := by
exact ha -- ha is exactly what we need
done

Difference from apply:
® apply: Can create new subgoals
® exact: Must completely solve the goal

® exact: Communicates intent more clearly

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB)

10/102



The assumption Tactic

Purpose: Find matching hypothesis automatically

theorem fst_of two_props_assumption (a b : Prop)
(ha : a) (hb : b) :

a := by
assumption -- Searches context for matching hypothesis
done

How it works:
® Searches local context for hypothesis matching goal
® Applies it automatically

® Useful when there are many hypotheses
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Section 2

Subsection 2.2




Introduction Rules for Connectives

Building proofs of compound propositions:

#check True.intro
#check And.intro
#check Or.inl
#check Or.inr
#check Iff.intro
#check Exists.intro

: True
ra-b-anb
-:ra-avb
-:b-avb
--:(a->b)~>(b-a) - (aeb)
- :V(a:a), Pa-3Ix, Px

These are constructors - they build proofs
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Elimination Rules for Connectives

Extracting information from compound propositions:

#check
#check
#check
#check
#check
#check
#check

False.elim
And.left
And.right
Or.elim
Iff.mp
Iff.mpr
Exists.elim

: False -
raAnb-a
panb-~
-:ravb-(a-c)-(b-c)-c
-:(aeb)-a-»>b
:(aeb)-b-a
: (3x, P x) - (Vx,

a

b

Px-c)->c

These are destructors - they extract information
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Proving Conjunction (And)

theorem And swap (a b : Prop) :

aAnb-bnaa:=hy

intro hab

apply And.intro

{ apply And.right
exact hab }

{ apply And.left
exact hab }

done

Steps:
1. Assume we havea A b
2. Toproveb A a,use And.intro
3. First subgoal: prove b (extract from a A b)

4. Second subgoal: prove a (extract from a A b)
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The Focus Combinator

Use braces to focus on subgoals:

theorem And_swap (a b : Prop) :
aAnb-baAa:=hy

intro hab

apply And.intro

{ exact And.right hab } -- First subgoal
{ exact And.left hab } -- Second subgoal
done

Benefitsof {... }:
® Structure proofs clearly
® Each subgoal completely solved inside braces

® Error if subgoal not fully proven
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Proving Disjunction (Or)

theorem Or_swap (a b : Prop) :

avb-bva:=hy

intro hab

apply Or.elim hab

{ intro ha
exact Or.inr ha }

{ intro hb
exact Or.inl hb }

done

Case analysis on disjunction:
® Or.elim: Splitinto two cases
® Case 1: If we have a, prove goal

® (Case 2: If we have b, prove goal
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Negation in Lean

Negation is defined as implication to False:

#print Not -- def Not (a : Prop) : Prop := a - False

theorem Not Not_intro (a : Prop) :
a - --a := by
intro ha hna
apply hna
exact ha
done

Key insight:
® —gmeansa — False
® To prove —a, assume a and derive contradiction

® ——ameans (a — False) — False
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Existential Quantification

def double (n : N) : N :=n + n
theorem Exists double iden :
dn : N, double n = n := by
apply Exists.intro 0

rfl
done

To prove Jx, P(x):
® Provide witness: Exists.intro witness
® Prove P holds for that witness
® Here:n = 0anddouble 0 =10
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Section 2

Subsection 2.3




Three Kinds of Equality

1. Syntactic equality: © = z, [2, 1, 3] = [2, 1, 3]
® Literally the same expression
2. Definitional equality: 2 + 2 =4

® Equal up to computation/reduction
® Proved by rfl

3. Propositional equality: z +y =y +
® Requires proof

® Not automatically true

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 21/102



The rfl Tactic

rfl: Proves definitional equality

-- B-reduction (function application)
theorem B_example {a B : Type} (f : a - B) (a : o) :
(fun x => f x) a=f a := by
rfl

-- b6-reduction (definition unfolding)
def double (n : N) : N :=n +n

theorem 6 example :
double 5 =5 + 5 := by
rfl

rfl works when: Both sides compute to same value
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The rw Tactic

rw: Rewrite using equation

theorem Eq_trans_symm_rw {a : Type} (a b c : a)
(hab : a =b) (hcb : ¢ =b) :

a=c := by
rw [hab] -- Replace a with b
rw [hcb] -- Replace c with b
done
Features:

® Apply equation left-to-right
® Use < forright-to-left: rw [<—hab]

® (Can expand definitions
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The simp Tactic

simp: Simplify using standard rewrites

theorem cong_example {a : Type} (a b cd : a)
(g:a-a->N->a)
(hab : a =b) (hcd : ¢ =d) :
gac (l+1)=gbd2:=hy
simp [hab, hcd]

What simp does:
® Applies standard simplification rules
® Canadd customrules: simp [theoreml, theorem2]

® Works exhaustively until no more simplifications
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The ac_rfl Tactic

ac_rfl: Associativity and commutativity

theorem abc_Eq cba (a b c : N) :
a+b+c=c+b+a:=hy
ac_rfl

What it handles:
® Reorderingterms:a+b=0b+a
® Regrouping: (a +b) +c=a+ (b+c¢)

® Works for +, %, and registered operators

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 25/102



Section 2

Subsection 2.4




The induction Tactic

Principle: Prove property for all values by cases

theorem add_zero (n : N) :
add @ n = n := by
induction n with
| zero = rfl
| succ n' ih => simp [add, ih]

Two cases:
® Base case (zero): Prove for O
® Inductive case (succ): Prove forn’ + 1 assuming true for n’

® ihistheinduction hypothesis
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Induction Example: Commutativity

theorem add_comm (m n : N) :
add mn =add nm := by
induction n with
| zero =>
simp [add, add zero]
| succ n' ih =>
simp [add, add_succ, ih]

Pattern:
1. Base case: Usually simple (often rfl)
2. Inductive case: Use ih (induction hypothesis)

3. Simplify with simp using relevant lemmas
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Section 3

Forward Proofs: Structured Constructs




Forward vs Backward Reasoning

Backward (we just saw):
® Start with goal
® Break it down into subgoals

® Work until we reach axioms/hypotheses

Forward (now):
® Start with what we know
® Build up intermediate results

® Eventually reach the goal

Both styles are useful! Choose based on problem.
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Structured Proof Keywords

Key constructs:

fix: Introduce variables (like intro)
assume: Introduce hypotheses (like intro)
show ... from:Stateand prove goal
have: Prove intermediate result

theorem fst_of two_props :
Yab : Prop, a~>b-a:=
fix a b : Prop
assume ha : a
assume hb : b
show a from ha
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The fix Keyword

fix: Introduce universally quantified variables

theorem example fix :
Ya b : Prop, ... :=
fix a b : Prop

Like intro but forward-style:
® Moves variables into context
® More explicit about types

® Canintroduce multiple at once

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 32/102



The assume Keyword

assume: Introduce hypothesis

theorem modus_ponens (a b : Prop) :
(a-b) »-a-0>b:=
assume hab : a - b
assume ha : a
show b from
hab ha

Forward reasoning:
® Start by assuming hypotheses
® Build proof from what we have

® Eventually show the goal
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The show Keyword

show ... from: State goal explicitly

theorem example show (a b : Prop) (ha : a) (hb : b) :
a =
show a from ha

Benefits:
® Documents what we're proving
® Can rephrase goal (up to computation)

® Makes proof more readable

Optional: Can omit if obvious: just ha
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The have Keyword

have: Prove intermediate lemma

theorem prop_comp (a b ¢ : Prop)
(hab : a » b) (hbc : b~ c) :
a-c =
assume ha : a
have hb : b := hab ha
have hc : c := hbc hb
show c from hc

Forward chaining:
® Build intermediate results
® Each have adds to context

® Chain reasoning step by step
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Forward vs Backward: Same Proof

Backward style:

theorem And swap_tactical (a b : Prop) :
aAnb-baa:=by
intro hab
apply And.intro
{ exact And.right hab }
{ exact And.left hab }

Forward style:

theorem And_swap (a b : Prop)
aAnb-baa:=
assume hab : a A b
have ha : a := And.left hab
have hb : b := And.right hab
show b A a from And.intro hb ha
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Calculational Proofs

calc: Chain equalities/inequalities

theorem two mul_example (m n : N) :
2*¥m+n=m+n+m;=

calc

2*m+n=m+m+n :=by rw [Nat.two _mul]

- =m+n+m:= by ac rfl
Benefits:

® (Clear chain of reasoning
® Each step explicitly justified

® Like handwritten math proofs
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Mixing Styles

Can use backward proofs within forward proofs:

theorem example mixed (a b : Prop) :
(Vx, x = true » a) » a :=
assume hall : Vx, x = true - a
show a from
by
apply hall true
rfl

Best of both worlds:
® High-level structure: forward
® | ow-level details: backward tactics

® Choose what's clearest
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Section 4

The PAT Principle




Propositions as Types (PAT)

Deep insight: Programs and proofs are the same thing!

Programs
Types

%
Execution

Proofs
Propositions
—

—
>
>
<> Verification

This is the foundation of proof assistants like Lean!
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PAT: Types as Propositions

Every type is a proposition:

Type A — B = Proposition " A implies B”
Type A X B = Proposition”A and B”
Type A 4+ B = Proposition"A or B”

® Empty type = False

® Unit type = True

Atypeisinhabited if and only if the corresponding proposition is provable!
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PAT: Terms as Proofs

Every term is a proof:

Term of type A — B = Proof that A implies B

® Function application = Modus ponens

Lambda abstraction = Proof of implication

Pair = Proof of conjunction

Sum = Proof of disjunction

Type checking = Proof checking!
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PAT Example: Modus Ponens

As alogical rule:
A A— B

As a function:

theorem modus ponens {A B : Prop}
(h1 : A - B) (h2 : A) : B :=
hl h2 -- Function application!

Key insight:
® hl: A — Bisafunctionfrom Ato B
® h2: Aisaninput
® h1lh2: Bisfunction application
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PAT: Universal Quantification

Remarkably: V is just a dependent function!

Vr:o0,P(x) = (x:0)— P(x)

- These are the same!
theorem examplel : Vn : N, n + 0
theorem example2 : (n : N) - n +

n s

0=n:=...

V is not primitive - it's defined as dependent functions!
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PAT: Proof Terms

Tactics compile to proof terms:

-- Tactical proof
theorem And_swap_tactical (a b : Prop) :
aAnb->baAa:=hy
intro hab
exact And.intro (And.right hab) (And.left hab)

-- Raw proof term (what tactics compile to)
theorem And_swap_raw (a b : Prop) :
aAnb-baa:=
fun hab => And.intro (And.right hab) (And.left hab)

Both are exactly the same to Lean!
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Why PAT Matters

Unification of concepts:
® No separate "proof language”
® All of type theory applies to proofs

® (Canreason about proofs as data

Practical benefits:
® Type checker = Proof checker
® Programming features work for proofs
® Proofs can compute

® (Can extract programs from proofs

This is the foundation of dependent type theory!
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Section 5

Inductive Predicates




What are Inductive Predicates?

Inductive predicate: Function of type --- — Prop

Like inductive types, but for propositions:
® Define by introduction rules
® "No junk, no confusion”

® (Can doinduction on proof terms

Think of them as:
® Formal systems (logic)
® Horn clauses (Prolog)

® |nference rules (proof theory)
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Example: Even Numbers

Mathematical definition:

In Lean:

inductive Even : N - Prop where
| zero : Even 0
| add_two : Vk : N, Even k -» Even (k + 2)

Two introduction rules construct all even number proofs!
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Using Even: Proving 4 is Even

theorem Even 4 : Even 4 := by
apply Even.add_ two
apply Even.add_two
exact Even.zero

Proof tree:
® 4 =2+2souseEven.add twowithk =2
® Need to prove Even 2
® 2=0-+2souseEven.add twowithk =0
® Need to prove Even 0
® Use Even.zero
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Three Ways to Define "Even”

1. Inductive predicate:
® Abstract, elegant
® |ndependent rules
® Natural for proofs

2. Recursive function:
® Computational
® Works with #eva'l
® Need to handle all cases

3. Direct definition:
® Most "mathematical”
e def evenNonrec (k : N) : Prop :=k %2 =20

Each has its uses! Inductive predicates excel at complex specifications.
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Example: Tennis Scores

Model valid tennis scores:

inductive Score : Type where

| vs : N> N - Score
advServ : Score
advRecv : Score

gameServ : Score
gameRecv : Score

"

infixr:50 ” — ” => Score.vs

Transition system: Which scores can follow from 0-0?
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Tennis Score Transitions

inductive Step : Score - Score - Prop where

serv_0_15 : Vn, Step (0-n) (15-n)
serv_15_30 : Vn, Step (15-n) (30-n)
serv_30_40 : ¥n, Step (30-n) (40-n)

serv_40 _game : ¥Yn, n < 40 - Step (40-n) Score.gameServ
serv_40_adv : Step (40-40) Score.advServ
recv_0 15 : Vn, Step (n-0) (n-15)

Binary predicate: Connects "before” and "after” states
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Reflexive Transitive Closure

Star: Reflexive transitive closure of any relation

inductive Star {a : Type} (R : a » a - Prop) :
o » a » Prop where
| base (a b : a) :Rab-StarRab
| refl (a : a) : Star Ra a
| trans (abc : a) :
Star Ra b » Star R b c » Star R a ¢

Three rules:
® base: Embed Rinto Star R
e refl: Reflexivity
® trans: Transitivity
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Logical Symbols as Inductive Predicates

Most logical symbols are defined inductively!

A (And): One constructor taking both props

V (0r): Two constructors (left or right)

® & (Iff): One constructor taking both directions
® I (Exists): One constructor with witness

® True: One constructor (trivial proof)

® False: Zero constructors (no proof!)

® — (Eq): One constructor (reflexivity)

Only ¥V and — are built into the logic!
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Definition of And

inductive And (a b : Prop) : Prop where
| intro : a - b - And a b

To prove a A b:
® Mustuse And.intro
® Need proof of a

® Need proof of b

To use hypothesis h : a A b:
® Extract left: And.left h : a
® Extractright: And.right h : b
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Definition of Or

inductive Or (a b : Prop) : Prop where
| inl : a-0rab
| inr : b - 0r ab

To prove a V b
® EitheruseOr.inl (prove a)
® OruseQOr.inr (prove b)

To use hypothesis h : a V b:
® Case analysis with Or.elim
® Handle both possibilities

PROOF101 Week 5 Proofs & Semantics Daniel Dia & Guest Lecturers (AUB) 57/102



Definition of Exists

inductive Exists {a : Type} (P : o - Prop) : Prop where
| intro : Va : o, P a » Exists P

Syntactic sugar: 3z : a, P(x):= Exists (Ax : «, P)

To prove Jdz, P(x):
® Provide witness a

® Prove P(a)

To use hypothesis h : 3z, P(x):

® Eliminate to get witness and proof
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Definition of Equality

inductive Eq {a : Type} : a - a - Prop where
| refl : Va : a, Eq a a

Only one constructor: Reflexivity!

From just refl, we can prove:
® Symmetry.a=b—>b=a
® Transitivity.a =b—>b=c—a=c
® Substitution: a = b — P(a) — P(b)

All equality properties follow from reflexivity!
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Rule Induction

Just as we induct on values, we can induct on proofs!

Called rule induction because:
® |nduction on introduction rules
® One case per constructor

® |nduction hypothesis for recursive constructors

By PAT: This is just structural induction on proof terms!
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Rule Induction Example

theorem mod_two Eq_zero of Even (n : N) (h : Even n) :
n%2=0 :=hy
induction h with
| zero =>
rfl
| add_two k hk ih =>
simp [Nat.add mod, ih]

Two cases from Even constructors:

® zero:Prove0 %2 =0
® add two: Assume k % 2 = 0 (ih), prove (k +2) %2 =0
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Example: Sorted Lists

inductive Sorted : List N - Prop where
| nil : Sorted []

single (x : N) : Sorted [x]

| two_or _more (x y : N) {zs : List N}

(hle : x =)
(hsorted : Sorted (y :: zs)) :
Sorted (x :: y :: zs)

Three constructors:
® Empty listis sorted
® Single element is sorted

® Two or more: first < second, rest sorted
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Proving Sorted Lists

theorem sorted 7 9 9 11 :
Sorted [7, 9, 9, 11] := by
apply Sorted.two_or_more
{simp} --7=9
{ apply Sorted.two_or_more
{simp } --9=9
{ apply Sorted.two or_more
{ simp } -- 9 = 11
{ exact Sorted.single _} } }

Build proof step by step using constructors
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Example: Palindromes

inductive Palindrome {a : Type} : List a - Prop where
| nil : Palindrome []

single (x : a) : Palindrome [x]

sandwich (x : a) (xs : List a)
(hxs : Palindrome xs) :

Palindrome ([x] ++ xs ++ [x])

Recursive structure:
® Empty and single elements are palindromes

® Sandwich: same element on both ends + palindrome middle
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Example: Full Binary Trees

inductive IsFull {a : Type} : BTree a - Prop where
| empty : IsFull BTree.empty
| node (a : a) (L r : BTree a)
(hl : IsFull 1) (hr : IsFull r)
(hiff : 1 = BTree.empty o r = BTree.empty) :
IsFull (BTree.node a 1 r)

Full tree property:

® Empty treeis full
® Node is full if: both subtrees full, and either both empty or both non-empty
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Section 6

Operational Semantics




What is Formal Semantics?

Formal semantics: Mathematical specification of what programs mean

Why formalize?
® Specify programming languages precisely
® Reason about programs mathematically
® Build verified compilers, interpreters, analyzers

® Find bugs in language specifications

Success story: WebAssembly
® Formalization revealed multiple soundness bugs

® Fixed before becoming standards
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Why Proof Assistants for Semantics?

Good match for automation:
® Little background machinery needed
® | ots of cases (computers excel at this)
® Track changes when extending language

® Catch subtle bugs

Real world: 30%+ of papers at the Principles of Programming Languages (POPL) conference
use proof assistants

In this lecture: Build operational semantics for a simple language
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The WHILE Language

Minimalistic imperative language:

S =skip
|z :=a
| S; S
|if B then S else
|while B do S

State: Function from variable names to values

e State=String — N
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(no-op)
(assignment)
(sequence)

(conditional)

(loop)
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WHILE in Lean

inductive Stmt : Type where

| skip 1 Stmt

| assign : String - (State -» N) - Stmt

| seq : Stmt - Stmt - Stmt

| ifThenElse : (State - Prop) - Stmt - Stmt - Stmt

| whileDo : (State - Prop) - Stmt - Stmt
infixr:90 ”; ” => Stmt.seq

Design choice: Shallow embedding
® Expressions are Lean functions: State - N
® (Conditions are predicates: State - Prop
® Simpler than deep embedding (ASTs)
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Example WHILE Program

- while x > y do
skip;
X i=x -1

def sillyLoop : Stmt :=
Stmt.whileDo (fun s => s ”"x” > s "y”)

(Stmt.skip;
Stmt.assign "x” (fun s => s "x” - 1))
What it does:
® Whilex >y

® Decrementx

® Eventuallyz <y
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Two Kinds of Operational Semantics

Big-step semantics (natural semantics):
® Judgment: (S,s) = ¢
® "Starting in state s, executing S terminates in state ¢”

® Direct: one step from start to finish

Small-step semantics (structural operational semantics):
® Judgment: (S, s) = (S’,s")
® "One step of execution”

® Execution is a chain of steps

Both are useful! Different strengths and weaknesses.
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Section 6

Subsection 6.1




Big-Step: The Idea

Judgment form: (S, s) =t

Read as:
® Startingin state s
® Executing statement .S

® Terminates in state ¢

Example:
(x:=z+y;y:=0, [z >3,y 5]) = [z 8y 0]

Single judgment for entire execution!
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Big-Step: Skip Rule

(skip,s) = s

Skip does nothing:
® No premises (axiom)
® State unchanged

® Simplest rule
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Big-Step: Assighment Rule

Assignment updates state:
® Evaluate expression a in state s
® Update state:  maps to new value

® Notation: s[z > v] means state with z updated to v

Example: (z := 5, [z > 3]) = [z = 5]
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Big-Step: Sequence Rule

Sequential composition:
® Execute Sfirst: s — ¢t
® ThenexecuteT't — u

® Final state: u

Intermediate state ¢ threads through!
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Big-Step: Conditional Rules

(S,s) =t
(if B then S else T,s) =t

if s(B) is true

(T,s) =t
(if B then S else T,s) =t

if s(B) is false

Two rules depending on condition:
® |f Btrue: execute then-branch

® |f Bfalse: execute else-branch
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Big-Step: While Rules

(S,s) =t (while B do S,t) = u
(while B do S,s) = u

if s(B) istrue

if s(B) isfal
il Bdes e el
While loop:

® |f condition false: done (state unchanged)

® |f condition true: execute body, then loop again

® Recursive rule!
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Big-Step in Lean

inductive BigStep : Stmt x State - State - Prop where
skip (s) :
BigStep (Stmt.skip, s) s
assign (x a s) :
BigStep (Stmt.assign x a, s) (s[x » a s])
seq (STs tu)
(hS : BigStep (S, s) t)
(hT : BigStep (T, t) u)
BigStep (S; T, s) u

infix:110 ” => ” => BigStep
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Using Big-Step Semantics

theorem sillyLoop from 1 BigStep :
(sillyLoop, (fun _ => 0)[”"Xx” » 1]) => (fun _ => 0) := by
rw [sillyLoop]
apply BigStep.while true
{ simp } -- Condition: x >y
apply BigStep.seq
{ apply BigStep.skip }
{ apply BigStep.assign } }
{ simp
apply BigStep.while false
simp }

-~

Build proof using introduction rules!
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Properties of Big-Step Semantics

What can we prove?

1. Determinism:
® If(S,s) =tand (S,s) =t
® Thent =1t

® Execution is deterministic!

2. Program equivalence:
® Prove two programs equivalent

® Same semantics in all states
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Determinism of Big-Step

theorem BigStep deterministic {Ss 1 r}
(hl : Ss » 1) (hr : Ss - r)

1=r:=hy
induction hl generalizing r with
| skip s =>

cases hr with | skip => rfl
assign x a s =>
cases hr with | assign => rfl
seq ST s le L hS hT ihS ihT =>
cases hr with
| seq _ _ _re _ hS' hT' =>
cases ihS hS' with | refl =>
cases ihT hT' with | refl => rfl
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What Big-Step Cannot Express

Limitations:

1. Nontermination:
® No judgment for infinite loops
® Can'tprovedt, (S, s) = tforallprograms

2. Intermediate states:
® Only see start and end

® Can't reason about what happens during execution

3. Interleaving:

® Can't model concurrent execution
Solution: Small-step semantics!
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Section 6

Subsection 6.2




Small-Step: The Idea

Judgment form: (S,s) = (5’,s")

Read as:
® Starting in state s
® Executing one step of S
® |eavesus in state s’

® With program S’ remaining
Execution: Chain of steps

(So580) = (S1,51) = (Sa,8) = -
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Small-Step: Configuration

Configuration: Pair (.S, s) of statement and state

Final configuration: No more steps possible
® For WHILE: Only (skip, s) is final

® Execution terminates when we reach final configuration

Example execution:
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Small-Step: Assignment Rule

(x :=a,s) = (skip, s[z — s(a)])

Assignment in one step:
® Evaluate and update state
® |eave skip toindicate completion

® No further evaluation needed
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Small-Step: Sequence Rules

(S,s) = (57,5
(S;Tys)= (S, T,s)

(skip; S,5) = (S, )

Two rules:
® |ffirst statement can step: step it

® |ffirst statementis skip: discard it

Second statement stays unchanged until first completes!
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Small-Step: Conditional Rules

if s(B) ist
(if B then S else T',s) = (95,s) i 5(B) istrue

if s(B) isfal
(if Bthen Selse T.5) = (T,5) || °\D) isfalse
One step to choose branch:

® Evaluate condition

® Replace with chosen branch

® State unchanged
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Small-Step: While Rule

(while B do S,s) = (if B then (S; while B do S) else skip,s)

Unfold while loop:
® Replace with conditional
® |ftrue: body then loop again
® |ffalse: skip (done)

® No evaluation here - just transformation

Note: There’s no rule for skip! (It's final)
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Small-Step in Lean

inductive SmallStep :
Stmt x State - Stmt x State - Prop where
| assign (x a s)
SmallStep (Stmt.assign x a, s)
(Stmt.skip, s[x » a s])
| seq_step (SS' Tss')
(hS : SmallStep (S, s) (S', s'))
SmallStep (S; T, s) (S'; T, s')
| seq_skip (T s)
SmallStep (Stmt.skip; T, s) (T, s)

infixr:100 ” - ” => SmallStep
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Reflexive Transitive Closure

Need to chain steps together!

Use Star (reflexive transitive closure):
* (S,s)="(5,5)

® Zero or more steps from (S, s) to (5’ s")
Big-step via small-step:

(S,s) =t < (5,s) =" (skip,t)

This connects the two semantics!
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Properties of Small-Step Semantics

What can we prove?

1. Determinism:
® Each configuration steps to at most one next configuration

® Execution is deterministic

2. Finality:
® Only skipis final

® Ensures we have all necessary rules

3. Equivalence with big-step:
°* (S,s)=t < (5,s) =" (skip,1)
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Finality Theorem

theorem SmallStep final (S s)
(=37 t, (S, s) = (T, t)) S = Stmt.skip := by

induction S with
| skip =>

simp

intros T t hstep

cases hstep
| assign x a =>

simp

exact (_, _, SmallStep.assign ..)
| seq S T ihS ihT => ...

Proof by induction on statement structure
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Big-Step vs Small-Step

Big-step advantages:
® Simpler (one relation)
® Direct connection to result

® Easier for some proofs

Small-step advantages:
® (Can express nontermination
® (Can reason about intermediate states
® Can model concurrency/interleaving

® More compositional

Use whichever fits your needs!
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Section 7

Summary




What We Learned

Proof techniques:

® Backward proofs: tactics working from goal

® Forward proofs: structured constructs

® PAT principle: propositions as types
Inductive predicates:

® Define propositions inductively

® |ntroduction and elimination rules

® Rule induction on proofs

Operational semantics:
® Formalize programming language meaning
® Big-step: entire execution
® Small-step: one step at a time
® Prove properties of programs and languages
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Section 8

Assignments & Next Steps




This Week’s Assignments

LoVe Demo 3: Backward Proofs
LoVe Demo 4: Forward Proofs
LoVe Demo 6: Inductive Predicates

LoVe Demo 9: Operational Semantics

Quiz 5: Proofs and Semantics (due next week)

Programming Assignment 5: Implement and verify semantics
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Questions & Discussion

Questions?

Join our community:
Discord: https://discord.gg/ZNGE8Xgd
Website: https://danieldia-dev.github.io/proofs/
Email: dmd13@mail.aub.edu
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“Beware of bugs in the above code; |
have only proved it correct, not tried
it”

— Donald Knuth
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